Noncirculant Toeplitz matrices all of whose powers are Toeplitz
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1185-1193
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $a$, $b$ and $c$ be fixed complex numbers. Let $M_n(a,b,c)$ be the $n\times n$ Toeplitz matrix all of whose entries above the diagonal are $a$, all of whose entries below the diagonal are $b$, and all of whose entries on the diagonal are $c$. For $1\leq k\leq n$, each $k\times k$ principal minor of $M_n(a,b,c)$ has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of $M_n(a,b,c)$. We also show that all complex polynomials in $M_n(a,b,c)$ are Toeplitz matrices. In particular, the inverse of $M_n(a,b,c)$ is a Toeplitz matrix when it exists.
Let $a$, $b$ and $c$ be fixed complex numbers. Let $M_n(a,b,c)$ be the $n\times n$ Toeplitz matrix all of whose entries above the diagonal are $a$, all of whose entries below the diagonal are $b$, and all of whose entries on the diagonal are $c$. For $1\leq k\leq n$, each $k\times k$ principal minor of $M_n(a,b,c)$ has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of $M_n(a,b,c)$. We also show that all complex polynomials in $M_n(a,b,c)$ are Toeplitz matrices. In particular, the inverse of $M_n(a,b,c)$ is a Toeplitz matrix when it exists.
Classification :
11B37, 11B39, 15A15, 15A57
Keywords: Toeplitz matrix; Toeplitz inverse; Toeplitz powers; principal minor; Fibonacci sequence
Keywords: Toeplitz matrix; Toeplitz inverse; Toeplitz powers; principal minor; Fibonacci sequence
@article{CMJ_2008_58_4_a22,
author = {Griffin, Kent and Stuart, Jeffrey L. and Tsatsomeros, Michael J.},
title = {Noncirculant {Toeplitz} matrices all of whose powers are {Toeplitz}},
journal = {Czechoslovak Mathematical Journal},
pages = {1185--1193},
year = {2008},
volume = {58},
number = {4},
mrnumber = {2471175},
zbl = {1174.15011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a22/}
}
TY - JOUR AU - Griffin, Kent AU - Stuart, Jeffrey L. AU - Tsatsomeros, Michael J. TI - Noncirculant Toeplitz matrices all of whose powers are Toeplitz JO - Czechoslovak Mathematical Journal PY - 2008 SP - 1185 EP - 1193 VL - 58 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a22/ LA - en ID - CMJ_2008_58_4_a22 ER -
%0 Journal Article %A Griffin, Kent %A Stuart, Jeffrey L. %A Tsatsomeros, Michael J. %T Noncirculant Toeplitz matrices all of whose powers are Toeplitz %J Czechoslovak Mathematical Journal %D 2008 %P 1185-1193 %V 58 %N 4 %U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a22/ %G en %F CMJ_2008_58_4_a22
Griffin, Kent; Stuart, Jeffrey L.; Tsatsomeros, Michael J. Noncirculant Toeplitz matrices all of whose powers are Toeplitz. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1185-1193. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a22/