Keywords: quasilinear ordinary differential equation; asymptotic form; unbounded solution
@article{CMJ_2008_58_4_a20,
author = {Kamo, Ken-ichi and Usami, Hiroyuki},
title = {Positive unbounded solutions of second order quasilinear ordinary differential equations and their application to elliptic problems},
journal = {Czechoslovak Mathematical Journal},
pages = {1153--1165},
year = {2008},
volume = {58},
number = {4},
mrnumber = {2471173},
zbl = {1174.34433},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a20/}
}
TY - JOUR AU - Kamo, Ken-ichi AU - Usami, Hiroyuki TI - Positive unbounded solutions of second order quasilinear ordinary differential equations and their application to elliptic problems JO - Czechoslovak Mathematical Journal PY - 2008 SP - 1153 EP - 1165 VL - 58 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a20/ LA - en ID - CMJ_2008_58_4_a20 ER -
%0 Journal Article %A Kamo, Ken-ichi %A Usami, Hiroyuki %T Positive unbounded solutions of second order quasilinear ordinary differential equations and their application to elliptic problems %J Czechoslovak Mathematical Journal %D 2008 %P 1153-1165 %V 58 %N 4 %U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a20/ %G en %F CMJ_2008_58_4_a20
Kamo, Ken-ichi; Usami, Hiroyuki. Positive unbounded solutions of second order quasilinear ordinary differential equations and their application to elliptic problems. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1153-1165. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a20/
[1] Bellman, R.: Stability Theory of Differential Equations. McGraw-Hill New York (1953) (Reprint: Dover, 1969). | MR | Zbl
[2] Berkovich, L. M.: The generalized Emden-Fowler equation. In: Symmetry in Nonlinear Physics. Proc. 2nd International Conference, Kyiv, Ukraine, July 7-13, 1997 Institute of Mathematics of the National Academy of Sciences of Ukraine Kyiv (1997), 155-163. | MR | Zbl
[3] Kamo, K.: Asymptotic equivalence for positive decaying solutions of quasilinear ordinary differential equations and its application to elliptic problems. Arch. Math., Brno 40 (2004), 209-217. | MR
[4] Kamo, K., Usami, H.: Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equation. Adv. Math. Sci. Appl. 10 (2000), 673-688. | MR
[5] Kamo, K., Usami, H.: Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equations with sub-homogeneity. Hiroshima Math. J. 31 (2001), 35-49. | DOI | MR | Zbl
[6] Kiguradze, I. T., Chanturiya, T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Dordrecht (1992).
[7] Kura, T.: The weak supersolution-subsolution method for second order quasilinear elliptic equations. Hiroshima Math. J. 19 (1989), 1-36. | DOI | MR | Zbl
[8] Lima, P. M.: Numerical methods and asymptotic error expansions for the Emden-Fowler equations. J. Comput. Appl. Math. 70 (1996), 245-266. | DOI | MR | Zbl
[9] Luning, C. D., Perry, W. L.: Positive solutions of negative exponent generalized Emden-Fowler boundary value problems. SIAM J. Math. Anal. 12 (1981), 874-879. | DOI | MR | Zbl
[10] Mizukami, M., Naito, M., Usami, H.: Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations. Hiroshima Math. J. 32 (2002), 51-78. | DOI | MR | Zbl
[11] Tanigawa, T.: Existence and asymptotic behavior of positive solutions of second order quasilinear differential equations. Adv. Math. Sci. Appl. 9 (1999), 907-938. | MR | Zbl