Exchange rings in which all regular elements are one-sided unit-regular
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 899-910 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be an exchange ring in which all regular elements are one-sided unit-regular. Then every regular element in $R$ is the sum of an idempotent and a one-sided unit. Furthermore, we extend this result to exchange rings satisfying related comparability.
Let $R$ be an exchange ring in which all regular elements are one-sided unit-regular. Then every regular element in $R$ is the sum of an idempotent and a one-sided unit. Furthermore, we extend this result to exchange rings satisfying related comparability.
Classification : 16D70, 16E20, 16E50, 16U60, 16U99
Keywords: exchange ring; one-sided unit-regularity; idempotent
@article{CMJ_2008_58_4_a2,
     author = {Chen, Huanyin},
     title = {Exchange rings in which all regular elements are one-sided unit-regular},
     journal = {Czechoslovak Mathematical Journal},
     pages = {899--910},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471155},
     zbl = {1166.16004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a2/}
}
TY  - JOUR
AU  - Chen, Huanyin
TI  - Exchange rings in which all regular elements are one-sided unit-regular
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 899
EP  - 910
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a2/
LA  - en
ID  - CMJ_2008_58_4_a2
ER  - 
%0 Journal Article
%A Chen, Huanyin
%T Exchange rings in which all regular elements are one-sided unit-regular
%J Czechoslovak Mathematical Journal
%D 2008
%P 899-910
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a2/
%G en
%F CMJ_2008_58_4_a2
Chen, Huanyin. Exchange rings in which all regular elements are one-sided unit-regular. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 899-910. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a2/

[1] Ara, P.: Strongly $\pi$-regular rings have stable range one. Proc. Amer. Math. Soc. 124 (1996), 3293-3298. | DOI | MR | Zbl

[2] Ara, P.: The exchange property for purely infinite simple rings. Proc. Amer. Math. Soc. 132 (2004), 2543-2547. | DOI | MR | Zbl

[3] Ara, P., Goodearl, K. R., O'Meara, K. C., Pardo, E.: Separative cancellation for projective modules over exchange rings. Israel J. Math. 105 (1998), 105-137. | DOI | MR | Zbl

[4] Ara, P., Goodearl, K. R., Pardo, E.: $K_0$ of purely infinite simple regular rings. $K$-Theory 26 (2002), 69-100. | DOI | MR | Zbl

[5] Camillo, V. P., Khurana, D. A.: Characterization of unit regular rings. Comm. Algebra 29 (2001), 2293-2295. | DOI | MR | Zbl

[6] Chen, H.: Elements in one-sided unit regular rings. Comm. Algebra 25 (1997), 2517-2529. | DOI | MR | Zbl

[7] Chen, H.: Related comparability over exchange rings. Comm. Algebra 27 (1999), 4209-4216. | DOI | MR | Zbl

[8] Chen, H.: Regular rings, idempotents and products of one-sided units. Comm. Algebra 34 (2006), 737-741. | DOI | MR | Zbl

[9] Chen, H., Li, F.: Exchange rings satisfying related comparability. Collect. Math. 53 (2002), 157-164. | MR

[10] Khurana, D., Lam, T. Y.: Clean matrices and unit-regular matrices. J. Algebra 280 (2004), 683-698. | DOI | MR | Zbl

[11] Lam, T. Y.: A crash course on stable range, cancellation, substitution and exchange. J. Algebra Appl. 3 (2004), 301-343. | DOI | MR | Zbl

[12] Lu, D., Li, Q., Tong, W.: Comparability, stability, and completions of ideals. Comm. Algebra 32 (2004), 2617-2634. | DOI | MR | Zbl

[13] Nicholson, W. K., Zhou, Y.: Clean rings: A survey, Advances in Ring Theory. Proceedings of the 4th China-Japan-Korea International Conference (2004), 181-198. | MR

[14] Pardo, E.: Comparability, separativity, and exchange rings. Comm. Algebra 24 (1996), 2915-2929. | DOI | MR | Zbl

[15] Wei, J.: Unit-regularity and stable range conditions. Comm. Algebra 33 (2005), 1937-1946. | DOI | MR | Zbl

[16] Tuganbaev, A. A.: Rings Close to Regular. Kluwer Academic Publishers, Dordrecht, Boston, London (2002). | MR | Zbl