Direct product decompositions of bounded commutative residuated $\ell$-monoids
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1129-1143 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The notion of bounded commutative residuated $\ell $-monoid ($BCR$ $\ell $-monoid, in short) generalizes both the notions of $MV$-algebra and of $BL$-algebra. Let $\c A$ be a $BCR$ $\ell $-monoid; we denote by $\ell (\c A)$ the underlying lattice of $\c A$. In the present paper we show that each direct product decomposition of $\ell (\c A)$ determines a direct product decomposition of $\c A$. This yields that any two direct product decompositions of $\c A$ have isomorphic refinements. We consider also the relations between direct product decompositions of $\c A$ and states on $\c A$.
The notion of bounded commutative residuated $\ell $-monoid ($BCR$ $\ell $-monoid, in short) generalizes both the notions of $MV$-algebra and of $BL$-algebra. Let $\c A$ be a $BCR$ $\ell $-monoid; we denote by $\ell (\c A)$ the underlying lattice of $\c A$. In the present paper we show that each direct product decomposition of $\ell (\c A)$ determines a direct product decomposition of $\c A$. This yields that any two direct product decompositions of $\c A$ have isomorphic refinements. We consider also the relations between direct product decompositions of $\c A$ and states on $\c A$.
Classification : 03G25, 06D35, 06F05
Keywords: bounded commutative residuated $\ell$-monoid; lattice; direct product decomposition; internal direct factor
@article{CMJ_2008_58_4_a18,
     author = {Jakub{\'\i}k, J\'an},
     title = {Direct product decompositions of bounded commutative residuated $\ell$-monoids},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1129--1143},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471171},
     zbl = {1174.06327},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a18/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Direct product decompositions of bounded commutative residuated $\ell$-monoids
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1129
EP  - 1143
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a18/
LA  - en
ID  - CMJ_2008_58_4_a18
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Direct product decompositions of bounded commutative residuated $\ell$-monoids
%J Czechoslovak Mathematical Journal
%D 2008
%P 1129-1143
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a18/
%G en
%F CMJ_2008_58_4_a18
Jakubík, Ján. Direct product decompositions of bounded commutative residuated $\ell$-monoids. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1129-1143. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a18/

[1] Birkhoff, G.: Lattice Theory. Third Edition Providence (1967). | MR | Zbl

[2] Cignoli, R., D'Ottaviano, M. I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Studia Logica Library Vol. 7. Kluwer Academic Publishers Dordrecht (2000). | MR

[3] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated $\ell$-monoids. Discrete Math. 306 (2006), 1317-1326. | DOI | MR

[4] Dvurečenskij, A., Rachůnek, J.: Bounded commutative residuated $\ell$-monoids with general comparability. Soft Comput. 10 (2006), 212-218. | DOI

[5] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers Dordrecht (1998). | MR

[6] Hashimoto, J.: On the product decompositions of partially ordered sets. Math. Japonicae 1 (1948), 120-123. | MR

[7] Jakubík, J.: Direct product decompositions of $MV$-algebras. Czech. Math. J. 44 (1994), 725-739.

[8] Jakubík, J.: Direct product decompositions of pseudo $MV$-algebras. Archivum Math. 37 (2001), 131-142. | MR

[9] Jakubík, J.: Direct product decompositions of pseudo effect algebras. Math. Slovaca 55 (2005), 379-398. | MR

[10] Jakubík, J., Csontóová, M.: Cancellation rule for internal direct product decompositions of a connected partially ordered set. Math. Bohenica 125 (2000), 115-122. | MR

[11] Kurosh, A. G.: Group Theory. Third Edition Moskva (1967), Russian. | Zbl

[12] Rachůnek, J., Šalounová, D.: Direct decompositions of dually residuated lattice ordered monoids. Discuss. Math. Gen. Algebra Appl. 24 (2004), 63-74. | DOI | MR

[13] Swamy, K. L. M.: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105-114. | DOI | MR | Zbl