Keywords: residuated lattice; residuated semilattice; biresiduation algebra; pseudo-MV-algebra; sectionally residuated semilattice; sectionally residuated lattice
@article{CMJ_2008_58_4_a17,
author = {Chajda, Ivan and K\"uhr, Jan},
title = {Join-semilattices whose sections are residuated po-monoids},
journal = {Czechoslovak Mathematical Journal},
pages = {1107--1127},
year = {2008},
volume = {58},
number = {4},
mrnumber = {2471170},
zbl = {1174.06324},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a17/}
}
Chajda, Ivan; Kühr, Jan. Join-semilattices whose sections are residuated po-monoids. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1107-1127. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a17/
[1] Abbott, J. C.: Semi-boolean algebra. Matem. Vestnik 4 (1967), 177-198. | MR | Zbl
[2] Alten, C. J. van: Representable biresiduated lattices. J. Algebra 247 (2002), 672-691. | DOI | MR
[3] Alten, C. J. van: On varieties of biresiduation algebras. Stud. Log. 83 (2006), 425-445. | DOI | MR
[4] Ceterchi, R.: Pseudo-Wajsberg algebras. Mult.-Valued Log. 6 (2001), 67-88. | MR | Zbl
[5] Chajda, I., Halaš, R., Kühr, J.: Implication in MV-algebras. Algebra Univers. 52 (2004), 377-382. | MR
[6] Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht (2000). | MR | Zbl
[7] Galatos, N., Tsinakis, C.: Generalized MV-algebras. J. Algebra 283 (2005), 254-291. | DOI | MR | Zbl
[8] Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras. Mult.-Valued Log. 6 (2001), 95-135. | MR | Zbl
[9] Georgescu, G., Iorgulescu, A.: Pseudo-BCK algebras: An extension of BCK algebras. Proc. of DMTCS'01: Combinatorics, Computability and Logic, London (2001), 97-114. | MR | Zbl
[10] Jipsen, P., Tsinakis, C.: A survey of residuated lattices. Ordered Algebraic Structures (J. Martinez, ed.), Kluwer Acad. Publ., Dordrecht (2002), 19-56. | MR | Zbl
[11] Kühr, J.: Pseudo BCK-algebras and residuated lattices. Contr. Gen. Algebra 16 (2005), 139-144. | MR
[12] Kühr, J.: Commutative pseudo BCK-algebras. (to appear) in Southeast Asian Bull. Math. | MR
[13] Leuştean, I.: Non-commutative Łukasiewicz propositional logic. Arch. Math. Log. 45 (2006), 191-213. | DOI | MR
[14] Rachůnek, J.: A non-commutative generalization of MV-algebras. Czech. Math. J. 52 (2002), 255-273. | DOI | MR
[15] Ward, M., Dilworth, R. P.: Residuated lattices. Trans. Am. Math. Soc. 45 (1939), 335-354. | DOI | MR | Zbl