On $S$-quasinormal and $c$-normal subgroups of a finite group
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1083-1095 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\cal F$ be a saturated formation containing the class of supersolvable groups and let $G$ be a finite group. The following theorems are presented: (1) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every maximal subgroup of all Sylow subgroups of $H$ is either $c$-normal or $S$-quasinormally embedded in $G$. (2) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every maximal subgroup of all Sylow subgroups of $F^*(H)$, the generalized Fitting subgroup of $H$, is either $c$-normal or $S$-quasinormally embedded in $G$. (3) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every cyclic subgroup of $F^*(H)$ of prime order or order 4 is either $c$-normal or $S$-quasinormally embedded in $G$.
Let $\cal F$ be a saturated formation containing the class of supersolvable groups and let $G$ be a finite group. The following theorems are presented: (1) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every maximal subgroup of all Sylow subgroups of $H$ is either $c$-normal or $S$-quasinormally embedded in $G$. (2) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every maximal subgroup of all Sylow subgroups of $F^*(H)$, the generalized Fitting subgroup of $H$, is either $c$-normal or $S$-quasinormally embedded in $G$. (3) $G\in \cal F$ if and only if there is a normal subgroup $H$ such that $G/H\in \cal F$ and every cyclic subgroup of $F^*(H)$ of prime order or order 4 is either $c$-normal or $S$-quasinormally embedded in $G$.
Classification : 20D10, 20D20, 20D40, 20E28
Keywords: $S$-quasinormally embedded subgroup; $c$-normal subgroup; $p$-nilpotent group; the generalized Fitting subgroup; saturated formation
@article{CMJ_2008_58_4_a14,
     author = {Li, Shirong and Li, Yangming},
     title = {On $S$-quasinormal and $c$-normal subgroups of a finite group},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1083--1095},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471167},
     zbl = {1166.20013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a14/}
}
TY  - JOUR
AU  - Li, Shirong
AU  - Li, Yangming
TI  - On $S$-quasinormal and $c$-normal subgroups of a finite group
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1083
EP  - 1095
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a14/
LA  - en
ID  - CMJ_2008_58_4_a14
ER  - 
%0 Journal Article
%A Li, Shirong
%A Li, Yangming
%T On $S$-quasinormal and $c$-normal subgroups of a finite group
%J Czechoslovak Mathematical Journal
%D 2008
%P 1083-1095
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a14/
%G en
%F CMJ_2008_58_4_a14
Li, Shirong; Li, Yangming. On $S$-quasinormal and $c$-normal subgroups of a finite group. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1083-1095. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a14/

[1] Asaad, M., Heliel, A. A.: On $S$-quasinormal embedded subgroups of finite groups. J. Pure App. Algebra 165 (2001), 129-135. | DOI | MR

[2] Ballester-Bolinches, A., Pedraza-Aguilera, M. C.: Sufficient conditions for supersolvability of finite groups. J. Pure App. Algebra 127 (1998), 113-118. | DOI | MR

[3] Deskins, W. E.: On quasinormal subgroups of finite groups. Math. Z. 82 (1963), 125-132. | DOI | MR | Zbl

[4] Kegel, O. H.: Sylow Gruppen und subnormalteiler endlicher Gruppen. Math. Z. 78 (1962), 205-221. | DOI | MR | Zbl

[5] Guo, X. Y., Shum, K. P.: On c-normal maximal and minimal subgroups of Sylow $p$-subgroups of finite groups. Arch. Math. 80 (2003), 561-569. | DOI | MR | Zbl

[6] Huppert, B.: Endliche Gruppen I. Springer-Verlag, Berlin-Heidelberg-New York (1967). | MR | Zbl

[7] Huppert, B., Blackburn, N.: Finite Groups III. Springer-Verlag, Berlin, New York (1982). | MR | Zbl

[8] Li, D., Guo, X.: The influence of c-normality of subgroups on structure of finite groups. Comm. Algebra 26 (1998), 1913-1922. | DOI | MR

[9] Li, D., Guo, X.: The influence of c-normality of subgroups on structure of finite groups II. J. Pure App. Algebra 150 (2000), 53-60. | DOI | MR

[10] Li, Shirong, He, Xuanli: On normally embedded subgroups of prime power order in finite groups. Comm. Algebra 36 (2008), 2333-2340. | DOI | MR | Zbl

[11] Li, Yangming, Wang, Yanming: On $\pi$-quasinormally embedded subgroups of finite group. J. Algebra 281 (2004), 109-123. | DOI | MR | Zbl

[12] Schmid, P.: Subgroups permutable with all Sylow subgroups. J. Algebra 207 (1998), 285-293. | DOI | MR | Zbl

[13] Srinivasan, S.: Two sufficient conditions for supersolvability of finite groups. Israel J. Math. 35 (1980), 210-214. | DOI | MR | Zbl

[14] Tate, J.: Nilpotent quotient groups. Topology 3 (1964), 109-111. | DOI | MR | Zbl

[15] Wang, Yanming: c-normality of groups and its properties. J. Algebra 180 (1996), 954-965. | DOI | MR | Zbl

[16] Wei, H.: On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups. Comm. Algebra 29 (2001), 2193-2200. | DOI | MR | Zbl

[17] Wei, H., Wang, Y., Li, Y.: On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups II. Comm. Algebra 31 (2003), 4807-4816. | DOI | MR | Zbl