Abelian group pairs having a trivial coGalois group
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1069-1081
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Torsion-free covers are considered for objects in the category $q_2.$ Objects in the category $q_2$ are just maps in $R$-Mod. For $R = {\mathbb Z},$ we find necessary and sufficient conditions for the coGalois group $G(A \longrightarrow B),$ associated to a torsion-free cover, to be trivial for an object $A \longrightarrow B$ in $q_2.$ Our results generalize those of E. Enochs and J. Rado for abelian groups.
Torsion-free covers are considered for objects in the category $q_2.$ Objects in the category $q_2$ are just maps in $R$-Mod. For $R = {\mathbb Z},$ we find necessary and sufficient conditions for the coGalois group $G(A \longrightarrow B),$ associated to a torsion-free cover, to be trivial for an object $A \longrightarrow B$ in $q_2.$ Our results generalize those of E. Enochs and J. Rado for abelian groups.
Classification :
13C11, 16D10, 16G20, 20K30, 20K40
Keywords: coGalois group; torsion-free covers; pairs of modules
Keywords: coGalois group; torsion-free covers; pairs of modules
@article{CMJ_2008_58_4_a13,
author = {Hill, Paul},
title = {Abelian group pairs having a trivial {coGalois} group},
journal = {Czechoslovak Mathematical Journal},
pages = {1069--1081},
year = {2008},
volume = {58},
number = {4},
mrnumber = {2471166},
zbl = {1174.20016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a13/}
}
Hill, Paul. Abelian group pairs having a trivial coGalois group. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1069-1081. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a13/