Barbilian's metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1059-1068 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper we answer two questions raised by Barbilian in 1960. First, we study how far can the hypothesis of Barbilian's metrization procedure can be relaxed. Then, we prove that Barbilian's metrization procedure in the plane generates either Riemannian metrics or Lagrance generalized metrics not reducible to Finslerian or Langrangian metrics.
In the present paper we answer two questions raised by Barbilian in 1960. First, we study how far can the hypothesis of Barbilian's metrization procedure can be relaxed. Then, we prove that Barbilian's metrization procedure in the plane generates either Riemannian metrics or Lagrance generalized metrics not reducible to Finslerian or Langrangian metrics.
Classification : 30C62, 51K05, 53B40, 53C60
Keywords: {Riemannian metrics, Finslerian metrics, Lagrangian metrics, Lagrange generalized metrics, Barbilian's metrization procedure, Apollonian metric}
@article{CMJ_2008_58_4_a12,
     author = {Boskoff, Wladimir G. and Suceav\u{a}, Bogdan D.},
     title = {Barbilian's metrization procedure in the plane yields either {Riemannian} or {Lagrange} generalized metrics},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1059--1068},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471165},
     zbl = {1174.53015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a12/}
}
TY  - JOUR
AU  - Boskoff, Wladimir G.
AU  - Suceavă, Bogdan D.
TI  - Barbilian's metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1059
EP  - 1068
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a12/
LA  - en
ID  - CMJ_2008_58_4_a12
ER  - 
%0 Journal Article
%A Boskoff, Wladimir G.
%A Suceavă, Bogdan D.
%T Barbilian's metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics
%J Czechoslovak Mathematical Journal
%D 2008
%P 1059-1068
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a12/
%G en
%F CMJ_2008_58_4_a12
Boskoff, Wladimir G.; Suceavă, Bogdan D. Barbilian's metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1059-1068. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a12/

[1] Anastasiei, M.: Certain generalizations of Finsler metrics. Contemp. Math. 196 (1996), 161-169. | DOI | MR | Zbl

[2] Barbilian, D.: Einordnung von Lobayschewskys Massenbestimmung in einer gewissen allgemeinen Metrik der Jordansche Bereiche. Časopis Mathematiky a Fysiky 64 (1934-35), 182-183 \JFM 61.0601.02.

[3] Barbilian, D.: Asupra unui principiu de metrizare. Stud. Cercet. Mat. 10 (1959), 68-116.

[4] Barbilian, D.: Fundamentele metricilor abstracte ale lui Poincaré şi Carathéodory ca aplicaţie a unui principiu general de metrizare. Stud. Cercet. Mat. 10 (1959), 273-306. | MR

[5] Barbilian, D.: J-metricile naturale finsleriene. Stud. Cercet. Mat. 11 (1960), 7-44. | MR

[6] Barbilian, D., Radu, N.: J-metricile naturale finsleriene şi funcţia de reprezentare a lui Riemann. Stud. Cercet. Mat. 12 (1962), 21-36. | MR

[7] Beardon, A. F.: The Apollonian metric of a domain in $\mathbb R^n$, in Quasiconformal mappings and analysis. Springer-Verlag (1998), 91-108. | MR

[8] Boskoff, W. G.: $S$-Riemannian manifolds and Barbilian spaces. Stud. Cercet. Mat. 46 (1994), 317-325. | MR | Zbl

[9] Boskoff, W. G.: Finslerian and induced Riemannian structures for natural Barbilian spaces. Stud. Cercet. Mat. 47 (1995), 9-16. | MR | Zbl

[10] Boskoff, W. G.: The connection between Barbilian and Hadamard spaces. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sr. 39 (1996), 105-111. | Zbl

[11] Boskoff, W. G.: Hyperbolic geometry and Barbilian spaces, Istituto per la Ricerca di Base. Hardronic Press (1996). | MR

[12] Boskoff, W. G.: A generalized Lagrange space induced by the Barbilian distance. Stud. Cercet. Mat. 50 (1998), 125-129. | MR | Zbl

[13] Boskoff, W. G., Horja, P.: The characterization of some spectral Barbilian spaces using the Tzitzeica construction. Stud. Cercet. Mat. 46 (1994), 503-514. | MR | Zbl

[14] Boskoff, W. G., Suceavă, B. D.: Barbilian spaces: the history of a geometric idea. Historia Mathematica 34 (2007), 221-224. | DOI | MR

[15] Boskoff, W. G., Suceavă, B. D.: The history of Barbilian metrization procedure and Barbilian spaces. Mem. Secţ. Ştiinţ. Acad. Română Ser. IV 28 (2005), 7-16. | MR

[16] Boskoff, W. G., Ciucă, M. G., Suceavă, B. D.: Distances induced by Barbilian's metrization procedure. Houston J. Math. 33 (2007), 709-717. | MR | Zbl

[17] Chern, S. S., Chen, W. H., Lam, K. S.: Lectures on Differential Geometry. World Scientific (1999). | MR | Zbl

[18] Gehring, F. W., Hag, K.: The Apollonian metric and quasiconformal mappings. Contemp. Math. 256 (2000), 143-163. | DOI | MR | Zbl

[19] Hästö, P. A.: The Appollonian metric: uniformity and quasiconvexity. Ann. Acad. Sci. Fennicae 28 (2003), 385-414. | MR

[20] Hästö, P. A.: The Apollonian metric: limits of the approximation and bilipschitz properties. Abstr. Appl. Anal. (2003), 1141-1158. | DOI | MR

[21] Hästö, P. A.: The Apollonian metric: quasi-isotropy and Seittenranta's metric. Comput. Methods Funct. Theory 4 (2004), 249-273. | DOI | MR | Zbl

[22] Hästö, P. A.: The Apollonian inner metric. Comm. Anal. Geom. 12 (2004), 927-947. | DOI | MR

[23] Hästö, P. A., Lindén, H.: Isometries of the half-Apollonian metric. Complex Var. Theory Appl. 49 (2004), 405-415. | DOI | MR

[24] Ibragimov, Z.: On the Apollonian metric of domains in $\overline{\mathbb R}^ n$. Complex Var. Theory Appl. 48 (2003), 837-855. | MR

[25] Ibragimov, Z.: Conformality of the Apollonian metric. Comput. Methods Funct. Theory 3 (2003), 397-411. | DOI | MR | Zbl

[26] Kelly, P. J.: Barbilian geometry and the Poincaré model. Amer. Math. Monthly 61 (1954), 311-319. | DOI | MR | Zbl

[27] Miron, R., Anastasiei, M., Bucătaru, I.: The Geometry of Lagrange Spaces Handbook of Finsler geometry. Kluwer Acad. Publ., Dordrecht (2003), 969-1122. | MR