Bilinear multipliers on Lorentz spaces
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1045-1057 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give one sufficient and two necessary conditions for boundedness between Lebesgue or Lorentz spaces of several classes of bilinear multiplier operators closely connected with the bilinear Hilbert transform.
We give one sufficient and two necessary conditions for boundedness between Lebesgue or Lorentz spaces of several classes of bilinear multiplier operators closely connected with the bilinear Hilbert transform.
Classification : 42B10, 42B15, 42B35, 47H60
Keywords: bilinear Hilbert transform; bilinear multipliers; Lorentz spaces
@article{CMJ_2008_58_4_a11,
     author = {Villarroya, Francisco},
     title = {Bilinear multipliers on {Lorentz} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1045--1057},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471164},
     zbl = {1174.42011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a11/}
}
TY  - JOUR
AU  - Villarroya, Francisco
TI  - Bilinear multipliers on Lorentz spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1045
EP  - 1057
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a11/
LA  - en
ID  - CMJ_2008_58_4_a11
ER  - 
%0 Journal Article
%A Villarroya, Francisco
%T Bilinear multipliers on Lorentz spaces
%J Czechoslovak Mathematical Journal
%D 2008
%P 1045-1057
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a11/
%G en
%F CMJ_2008_58_4_a11
Villarroya, Francisco. Bilinear multipliers on Lorentz spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1045-1057. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a11/

[1] Bennet, C., Sharpley, R.: Interpolation of operators. Pure and applied mathematics vol. 129, Academic Press, Inc., New York (1988). | MR

[2] Calderón, A. P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. USA 74 1324-1327 (1977). | DOI | MR

[3] Fefferman, C.: Pointwise convergence of Fourier series. Ann. Math. 98 551-571 (1973). | DOI | MR | Zbl

[4] Gilbert, J., Nahmod, A.: Boundedness of bilinear operators with non-smooth symbols. Math. Res. Lett. 7 (2000), 767-778. | DOI | MR

[5] Gilbert, J., Nahmod, A.: Bilinear operators with non-smooth symbols. J. Fourier Anal. Appl. 7 (2001), 437-469. | DOI | MR

[6] Grafakos, L., Li, X.: Uniform bounds for the bilinear Hilbert transform I. Annals of Mathematics 159 (2004), 889-933. | DOI | MR

[7] Lacey, M.: On the bilinear Hilbert transform. Doc. Math., vol. II 647-656 (1998). | MR | Zbl

[8] Lacey, M., Thiele, C.: $L^p$ bounds on the bilinear Hilbert transform for $2. Ann. Math. 146 (1997), 693-724. MR 1491450 | Zbl 0946.44001

[9] Lacey, M., Thiele, C.: On Calderón's conjecture. Ann. Math. 149 (1999), 475-496. | DOI | MR | Zbl

[10] Lacey, M.: The bilinear maximal function maps into $L^p$ for $2/3. Ann. Math. 151 (2000), 35-57. DOI 10.2307/121111 | MR 1745019

[11] Larsen, R.: An introduction to the theory of multipliers, vol. 175. Springer-Verlag (1971). | MR

[12] Muscalu, C., Tao, T., Thiele, C.: Multilinear operators given by singular multipliers. J. Amer. Math. Soc. 15 (2002), 469-496. | DOI | MR

[13] Muscalu, C., Tao, T., Thiele, C.: Uniform estimates on multi-linear operators with modulation symmetry. J. Anal. Math. 88 255-309 (2002). | DOI | MR | Zbl

[14] Thiele, C.: On the bilinear Hilbert transform. Universität Kiel, Habilitation (1998).