Keywords: bilinear Hilbert transform; bilinear multipliers; Lorentz spaces
@article{CMJ_2008_58_4_a11,
author = {Villarroya, Francisco},
title = {Bilinear multipliers on {Lorentz} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {1045--1057},
year = {2008},
volume = {58},
number = {4},
mrnumber = {2471164},
zbl = {1174.42011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a11/}
}
Villarroya, Francisco. Bilinear multipliers on Lorentz spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1045-1057. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a11/
[1] Bennet, C., Sharpley, R.: Interpolation of operators. Pure and applied mathematics vol. 129, Academic Press, Inc., New York (1988). | MR
[2] Calderón, A. P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. USA 74 1324-1327 (1977). | DOI | MR
[3] Fefferman, C.: Pointwise convergence of Fourier series. Ann. Math. 98 551-571 (1973). | DOI | MR | Zbl
[4] Gilbert, J., Nahmod, A.: Boundedness of bilinear operators with non-smooth symbols. Math. Res. Lett. 7 (2000), 767-778. | DOI | MR
[5] Gilbert, J., Nahmod, A.: Bilinear operators with non-smooth symbols. J. Fourier Anal. Appl. 7 (2001), 437-469. | DOI | MR
[6] Grafakos, L., Li, X.: Uniform bounds for the bilinear Hilbert transform I. Annals of Mathematics 159 (2004), 889-933. | DOI | MR
[7] Lacey, M.: On the bilinear Hilbert transform. Doc. Math., vol. II 647-656 (1998). | MR | Zbl
[8] Lacey, M., Thiele, C.: $L^p$ bounds on the bilinear Hilbert transform for $2. Ann. Math. 146 (1997), 693-724. MR 1491450 | Zbl 0946.44001
[9] Lacey, M., Thiele, C.: On Calderón's conjecture. Ann. Math. 149 (1999), 475-496. | DOI | MR | Zbl
[10] Lacey, M.: The bilinear maximal function maps into $L^p$ for $2/3. Ann. Math. 151 (2000), 35-57. DOI 10.2307/121111 | MR 1745019
[11] Larsen, R.: An introduction to the theory of multipliers, vol. 175. Springer-Verlag (1971). | MR
[12] Muscalu, C., Tao, T., Thiele, C.: Multilinear operators given by singular multipliers. J. Amer. Math. Soc. 15 (2002), 469-496. | DOI | MR
[13] Muscalu, C., Tao, T., Thiele, C.: Uniform estimates on multi-linear operators with modulation symmetry. J. Anal. Math. 88 255-309 (2002). | DOI | MR | Zbl
[14] Thiele, C.: On the bilinear Hilbert transform. Universität Kiel, Habilitation (1998).