On a class of Szász-Mirakyan type operators
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 705-716 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The actual construction of the Szász-Mirakyan operators and its various modifications require estimations of infinite series which in a certain sense restrict their usefulness from the computational point of view. Thus the question arises whether the Szász-Mirakyan operators and their generalizations cannot be replaced by a finite sum. In connection with this question we propose a new family of linear positive operators.
The actual construction of the Szász-Mirakyan operators and its various modifications require estimations of infinite series which in a certain sense restrict their usefulness from the computational point of view. Thus the question arises whether the Szász-Mirakyan operators and their generalizations cannot be replaced by a finite sum. In connection with this question we propose a new family of linear positive operators.
Classification : 41A36
Keywords: linear positive operator; polynomial weighted space
@article{CMJ_2008_58_3_a8,
     author = {Walczak, Zbigniew},
     title = {On a class of {Sz\'asz-Mirakyan} type operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {705--716},
     year = {2008},
     volume = {58},
     number = {3},
     mrnumber = {2455932},
     zbl = {1174.41023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a8/}
}
TY  - JOUR
AU  - Walczak, Zbigniew
TI  - On a class of Szász-Mirakyan type operators
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 705
EP  - 716
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a8/
LA  - en
ID  - CMJ_2008_58_3_a8
ER  - 
%0 Journal Article
%A Walczak, Zbigniew
%T On a class of Szász-Mirakyan type operators
%J Czechoslovak Mathematical Journal
%D 2008
%P 705-716
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a8/
%G en
%F CMJ_2008_58_3_a8
Walczak, Zbigniew. On a class of Szász-Mirakyan type operators. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 705-716. http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a8/

[1] Atakut, C., Ispir, N.: The order of approximation by certain linear positive operators. Math. Balk., New Ser. 15 (2001), 25-33. | MR | Zbl

[2] Becker, M.: Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces. Indiana Univ. Math. J. 27 (1978), 127-142. | DOI | MR | Zbl

[3] Becker, M., Kucharski, D., Nessel, R. J.: Global Approximation theorems for the Szasz-Mirakjan operators in exponential weight spaces. Linear Spaces and Approximation (Proc. Conf. Oberwolfach, 1977). ISNM, Int. Ser. Numer. Math. 40 (1978), 319-333. | MR

[4] Ciupa, A.: On the approximation by Favard-Szasz type operators. Rev. Anal. Numér. Théor. Approx. 25 (1996), 57-61. | MR | Zbl

[5] Ciupa, A.: Approximation by a generalized Szasz type operators. J. Comput. Anal. Appl. 5 (2003), 413-424. | MR

[6] Vore, R. A. De, Lorentz, G. G.: Constructive Approximation. Springer Berlin (1993). | MR

[7] Feng, G.: Weighted approximation on Szasz-type operators. Anal. Theory Appl. 19 (2003), 47-54. | DOI | MR | Zbl

[8] Feng, G.: A characterization of pointwise approximation for linear combinations of Szász-type operators. Chinese Quart. J. Math. 19 (2004), 379-384. | MR

[9] Gupta, P., Gupta, V.: Rate of convergence on Baskakov-Szasz type operators. Fasc. Math. 31 (2001), 37-44. | MR

[10] Gupta, V.: Error estimation for mixed summation integral type operators. J. Math. Anal. Appl. 313 (2006), 632-641. | DOI | MR | Zbl

[11] Gupta, V., Maheshwari, P.: On Baskakov-Szasz type operators. Kyungpook Math. J. 43 (2003), 315-325. | MR | Zbl

[12] Gupta, V., Pant, R. P.: Rate of convergence for the modified Szasz-Mirakyan operators on functions of bounded variation. J. Math. Anal. Appl. 233 (1999), 476-483. | DOI | MR | Zbl

[13] Gupta, V., Vasishtha, V., Gupta, M. K.: Rate of convergence of the Szasz-Kantorovitch-Bezier operators for bounded variation functions. Publ. Inst. Math., Nouv. Sér. 72 (2002), 137-143. | DOI | MR | Zbl

[14] Guo, S.: On the rate of convergence of the integrated Meyer-König and Zeller operators for functions of bounded variation. J. Approximation Theory 56 (1989), 245-255. | DOI | MR | Zbl

[15] Guo, S., Li, C., Sun, Y., Yand, G., Yue, S.: Pointwise estimate for Szasz-type operators. J. Approximation Theory 94 (1998), 160-171. | DOI | MR

[16] Herzog, M.: Approximation theorems for modified Szasz-Mirakjan operators in polynomial weight spaces. Matematiche 54 (1999), 77-90. | MR | Zbl

[17] Ispir, N.: Weighted approximation by modified Favard-Szász operators. Int. Math. J. 3 (2003),1053-1060. | MR

[18] Ispir, N., Atakut, C.: Approximation by modified Szasz-Mirakyan operators on weighted spaces. Proc. Indian Acad. Sci., Math. Sci. 112 (2002), 571-578. | DOI | MR

[19] Lehnhoff, H. G.: On a modified Szasz-Mirakjan operator. J. Approximation Theory 42 (1984), 278-282. | DOI | MR | Zbl

[20] Lesniewicz, M., Rempulska, L.: Approximation by some operators of the Szasz-Mirakjan type in exponential weight spaces. Glas. Mat., III. Ser. 32 (1997), 57-69. | MR | Zbl

[21] Li, S.: Local smoothness of functions and Baskakov-Durrmeyer operators. J. Approximation Theory 88 (1997), 139-153. | DOI | MR | Zbl

[22] Linsen, X., Xiaoping, Z.: Pointwise characterization for combinations of Baskakov operators. Approximation Theory Appl. 18 (2002), 76-89. | MR

[23] Rempulska, L., Walczak, Z.: On modified Baskakov operators. Proc. A. Razmadze Math. Inst. 133( (2003), 109-117. | MR | Zbl

[24] Rempulska, L., Walczak, Z.: Approximation by some operators of Szasz-Mirakyan type. Anal. Theory Appl. 20 (2004), 1-15. | DOI | MR | Zbl

[25] Rempulska, L., Walczak, Z.: Modified Szasz-Mirakyan operators. Math. Balk., New Ser. 18 (2004), 53-63. | MR | Zbl

[26] Sahai, A., Prasard, G.: On simultaneous approximation by modified Lupas operators. J. Approximation Theory 45 (1985), 122-128. | DOI | MR

[27] Totik, V.: Uniform approximation by Szász-Mirakjan type operators. Acta Math. 41 (1983), 291-307. | MR | Zbl

[28] Walczak, Z.: On certain linear positive operators in exponential weighted spaces. Math. J. Toyama Univ. 25 (2002), 109-118. | MR | Zbl

[29] Walczak, Z.: On certain positive linear operators in weighted polynomial spaces. Acta Math. 101 (2003), 179-191. | MR

[30] Walczak, Z.: Approximation properties of certain linear positive operators in exponential weighted spaces. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 42 (2003), 123-130. | MR | Zbl

[31] Walczak, Z.: Approximation by some linear positive operators of functions of two variables. Saitama Math. J. 21 (2003), 23-31. | MR | Zbl

[32] Walczak, Z.: On the rate of convergence for modified Baskakov operators. Liet. matem. rink 44 (2004), 124-130. | MR | Zbl

[33] Walczak, Z.: Approximation by some linear positive operators in polynomial weighted spaces. Publ. Math. Debrecen 64 (2004), 353-367. | MR | Zbl

[34] Walczak, Z.: Approximation properties of certain linear positive operators in polynomial weighted spaces of functions of one and two variables. Publ. Elektrotehn. Fak. Univ. Beograd 15 (2004), 52-65. | MR | Zbl

[35] Walczak, Z.: On the convergence of the modified Szasz-Mirakyan operators. Yokohama Math. J. 51 (2004), 11-18. | MR | Zbl

[36] Walczak, Z.: On the rate of convergence for some linear operators. Hiroshima Math. J. 35 (2005), 115-124. | DOI | MR | Zbl

[37] Wood, B.: Uniform approximation with positive linear operators generated by binomial expansions. J. Approximation Theory 56 (1989), 48-58. | DOI | MR | Zbl

[38] Xiehua, S.: On the convergence of the modified Szasz-Mirakjan operator. Approximation Theory Appl. 10 (1994), 20-25. | MR