Extreme preservers of maximal column rank inequalities of matrix sums over semirings
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 693-703
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We characterize linear operators that preserve sets of matrix ordered pairs which satisfy extreme properties with respect to maximal column rank inequalities of matrix sums over semirings.
We characterize linear operators that preserve sets of matrix ordered pairs which satisfy extreme properties with respect to maximal column rank inequalities of matrix sums over semirings.
Classification :
15A03, 15A04, 15A45
Keywords: linear operator; rank inequality; maximal column rank.
Keywords: linear operator; rank inequality; maximal column rank.
@article{CMJ_2008_58_3_a7,
author = {Song, Seok-Zun and Park, Kwon-Ryong},
title = {Extreme preservers of maximal column rank inequalities of matrix sums over semirings},
journal = {Czechoslovak Mathematical Journal},
pages = {693--703},
year = {2008},
volume = {58},
number = {3},
mrnumber = {2455931},
zbl = {1174.15001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a7/}
}
TY - JOUR AU - Song, Seok-Zun AU - Park, Kwon-Ryong TI - Extreme preservers of maximal column rank inequalities of matrix sums over semirings JO - Czechoslovak Mathematical Journal PY - 2008 SP - 693 EP - 703 VL - 58 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a7/ LA - en ID - CMJ_2008_58_3_a7 ER -
Song, Seok-Zun; Park, Kwon-Ryong. Extreme preservers of maximal column rank inequalities of matrix sums over semirings. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 693-703. http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a7/