@article{CMJ_2008_58_3_a5,
author = {Gardner, B. J. and Parmenter, M. M.},
title = {Directoid groups},
journal = {Czechoslovak Mathematical Journal},
pages = {669--681},
year = {2008},
volume = {58},
number = {3},
mrnumber = {2455929},
zbl = {1174.06340},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a5/}
}
Gardner, B. J.; Parmenter, M. M. Directoid groups. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 669-681. http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a5/
[1] Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et anneaux réticulés. Berlin etc., Springer (1977). | MR | Zbl
[2] Fuchs, L.: Absolutes in partially ordered groups. Kon. Nederl. Akad. Wetensch. Proc. Amsterdam 52 (1949), 251-255. | MR | Zbl
[3] Fuchs, L.: Partially ordered algebraic systems. Oxford-London-New York-Paris, Pergamon Press (1963). | MR | Zbl
[4] Gardner, B. J., Parmenter, M. M.: Directoids and directed groups. Algebra Univ. 33 (1995), 254-273. | DOI | MR | Zbl
[5] Hall, T. E.: Identities for existence varieties of regular semigroups. Bull. Austral. Math. Soc. 40 (1989), 59-77. | DOI | MR | Zbl
[6] Higgins, P. J.: Groups with multiple operators. Proc. London Math. Soc. 6 (1956), 366-416. | MR | Zbl
[7] Jaffard, P.: Un contre-exemple concernant les groupes de divisibilité. C.R. Acad. Sci. Paris 243 (1956), 1264-1266. | MR
[8] Jakubík, J.: On directed groups with additional operations. Math. Bohem. 118 (1993), 11-17. | MR
[9] Ježek, J., Quackenbush, R.: Directoids: algebraic models of up-directed sets. Algebra Univ. 27 (1990), 49-69. | DOI | MR
[10] Kopytov, V. M., Dimitrov, Z. I.: On directed groups. Siberian Math. J. 30 (1989), 895-902. | DOI | MR | Zbl
[11] Kurosh, A. G.: Lectures on general algebra. New York, Chelsea (1963). | MR
[12] Leutola, K., Nieminen, J.: Posets and generalized lattices. Algebra Univ. 16 (1983), 344-354. | MR | Zbl
[13] McAlister, D. B.: On multilattice groups. Proc. Cambridge Phil. Soc. 61 (1965), 621-638. | MR | Zbl
[14] Nieminen, J.: On distributive and modular $\chi$-lattices. Yokohama Math. J. 31 (1983), 13-20. | MR | Zbl
[15] Snášel, V.: $\lambda$-lattices. Math. Bohem. 122 (1997), 267-272. | MR