Keywords: differential equations with deviations; equivalence of differential equations; symmetry of differential equation; differential invariants; moving frames
@article{CMJ_2008_58_3_a2,
author = {Tryhuk, V.},
title = {Equivalence and symmetries of first order differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {605--635},
year = {2008},
volume = {58},
number = {3},
mrnumber = {2455926},
zbl = {1174.34051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a2/}
}
Tryhuk, V. Equivalence and symmetries of first order differential equations. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 605-635. http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a2/
[1] Aczél, J.: Lectures on Functional Equations and Their Applications. Academic Press, New York (1966). | MR
[2] Awane, A., Goze, M.: Pfaffian Systems, k-symplectic Systems. Kluwer Academic Publischers (Dordrecht-Boston-London) (2000). | MR | Zbl
[3] Bryant, R., Chern, S. S., Goldschmidt, H., Griffiths, P. A.: Exterior Differential Systems. Mat. Sci. Res. Inst. Publ. 18, Springer-Verlag (1991). | DOI | MR | Zbl
[4] Cartan, E.: Les systémes différentiels extérieurs et leurs applications géometriques. Act. Scient. et Ind. 994 (1945). | MR | Zbl
[5] Cartan, E.: Sur la structure des groupes infinis de transformations. Ann. Ec. Norm. 3-e serie, t. XXI 153-206 (1904), (also Oeuvres Complètes, Partie II, Vol 2, Gauthier-Villars, Paris 1953) \JFM 35.0176.04. | MR
[6] Čermák, J.: Continuous transformations of differential equations with delays. Georgian Math. J. 2 (1995), 1-8. | DOI | MR
[7] Chrastina, J.: Transformations of differential equations. Equadiff 9 CD ROM, Papers, Masaryk university, Brno (1997), 83-92.
[8] Chrastina, J.: The formal theory of differential equations. Folia Fac. Scient. Nat. Univ. Masarykianae Brunensis, Mathematica 6 (1998). | MR | Zbl
[9] Gardner, R. B.: The method of equivalence and its applications. CBMS-NSF Regional Conf. in Appl. Math. 58 (1989). | MR | Zbl
[10] Neuman, F.: On transformations of differential equations and systems with deviating argument. Czech. Math. J. 31 (1981), 87-90. | MR | Zbl
[11] Neuman, F.: Simultaneous solutions of a system of Abel equations and differential equations with several delays. Czech. Math. J. 32 (1982), 488-494. | MR
[12] Neuman, F.: Transformations and canonical forms of functional-differential equations. Proc. Roy. Soc. Edinburgh 115 A (1990), 349-357. | MR
[13] Neuman, F.: Global Properties of Linear Ordinary Differential Equations. Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht-Boston-London (1991). | MR | Zbl
[14] Neuman, F.: On equivalence of linear functional-differential equations. Result. Math. 26 (1994), 354-359. | DOI | MR | Zbl
[15] Sharpe, R. V.: Differential Geometry. Graduate Texts in Math. 166, Springer Verlag (1997). | MR | Zbl
[16] Tryhuk, V.: The most general transformations of homogeneous linear differential retarded equations of the first order. Arch. Math. (Brno) 16 (1980), 225-230. | MR
[17] Tryhuk, V.: The most general transformation of homogeneous linear differential retarded equations of the $n$-th order. Math. Slovaca 33 (1983), 15-21. | MR
[18] Tryhuk, V.: On global transformations of functional-differential equations of the first order. Czech. Math. J. 50 (2000), 279-293. | DOI | MR | Zbl
[19] Tryhuk, V., Dlouhý, O.: The moving frames for differential equations. Arch. Math. (Brno), Part I. The change of independent variable 39 (2003), 317-333 Part II. Underdetermined and functional equations 40 (2004), 69-88. | MR