On Lipschitz and d.c. surfaces of finite codimension in a Banach space
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 849-864 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated $\sigma $-ideals are studied. These $\sigma $-ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.
Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated $\sigma $-ideals are studied. These $\sigma $-ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.
Classification : 46T05, 47H05, 58C20
Keywords: Banach space; Lipschitz surface; d.c. surface; multiplicity points of monotone operators; singular points of convex functions; Aronszajn null sets
@article{CMJ_2008_58_3_a18,
     author = {Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {On {Lipschitz} and d.c. surfaces of finite codimension in a {Banach} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {849--864},
     year = {2008},
     volume = {58},
     number = {3},
     mrnumber = {2455942},
     zbl = {1174.46040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a18/}
}
TY  - JOUR
AU  - Zajíček, Luděk
TI  - On Lipschitz and d.c. surfaces of finite codimension in a Banach space
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 849
EP  - 864
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a18/
LA  - en
ID  - CMJ_2008_58_3_a18
ER  - 
%0 Journal Article
%A Zajíček, Luděk
%T On Lipschitz and d.c. surfaces of finite codimension in a Banach space
%J Czechoslovak Mathematical Journal
%D 2008
%P 849-864
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a18/
%G en
%F CMJ_2008_58_3_a18
Zajíček, Luděk. On Lipschitz and d.c. surfaces of finite codimension in a Banach space. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 849-864. http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a18/

[1] Berkson, B.: Some metrics on the subspaces of a Banach space. Pacific J. Math. 13 (1963), 7-22. | DOI | MR

[2] Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, Vol. 1. Colloqium publications (American Mathematical Society); v. 48, Providence, Rhode Island (2000). | MR

[3] Duda, J.: On inverses of $\delta$-convex mappings. Comment. Math. Univ. Carolin. 42 (2001), 281-297. | MR | Zbl

[4] Erdös, P.: On the Hausdorff dimension of some sets in Euclidean space. Bull. Amer. Math. Soc. 52 (1946), 107-109. | DOI | MR

[5] Gohberg, I. C., Krein, M. G.: Fundamental aspects of defect numbers, root numbers, and indexes of linear operators. Uspekhi Mat. Nauk 12 (1957), 43-118 Russian. | MR

[6] Hartman, P.: On functions representable as a difference of convex functions. Pacific J. Math. 9 (1959), 707-713. | DOI | MR | Zbl

[7] Heisler, M.: Some aspects of differentiability in geometry on Banach spaces. Ph.D. thesis, Charles University, Prague (1996).

[8] Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag, Berin (1976). | MR | Zbl

[9] Kopecká, E., Malý, J.: Remarks on delta-convex functions. Comment. Math. Univ. Carolin. 31 (1990), 501-510. | MR

[10] Largillier, A.: A note on the gap convergence. Appl. Math. Lett. 7 (1994), 67-71. | DOI | MR | Zbl

[11] Lindenstrauss, J., Preiss, D.: Fréchet differentiability of Lipschitz functions (a survey). In: Recent Progress in Functional Analysis, 19-42, North-Holland Math. Stud. 189, North-Holland, Amsterdam (2001). | MR | Zbl

[12] Lindenstrauss, J., Preiss, D.: On Fréchet differentiability of Lipschitz maps between Banach spaces. Annals Math. 157 (2003), 257-288. | DOI | MR | Zbl

[13] Preiss, D.: Almost differentiability of convex functions in Banach spaces and determination of measures by their values on balls. Collection: Geometry of Banach spaces (Strobl, 1989), 237-244, London Math. Soc. Lecture Note Ser. 158 (1990). | MR

[14] Preiss, D., Zajíček, L.: Directional derivatives of Lipschitz functions. Israel J. Math. 125 (2001), 1-27. | DOI | MR

[15] Veselý, L.: On the multiplicity points of monotone operators on separable Banach spaces. Comment. Math. Univ. Carolin. 27 (1986), 551-570. | MR

[16] Veselý, L., Zajíček, L.: Delta-convex mappings between Banach spaces and applications. Dissertationes Math. (Rozprawy Mat.) 289 (1989). | MR

[17] Zajíček, L.: On the points of multivaluedness of metric projections in separable Banach spaces. Comment. Math. Univ. Carolin. 19 (1978), 513-523. | MR

[18] Zajíček, L.: On the points of multiplicity of monotone operators. Comment. Math. Univ. Carolin. 19 (1978), 179-189. | MR

[19] Zajíček, L.: On the differentiation of convex functions in finite and infinite dimensional spaces. Czech. Math. J. 29 (1979), 340-348. | MR

[20] Zajíček, L.: Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space. Czech. Math. J. 33 (1983), 292-308. | MR

[21] Zajíček, L.: On $\sigma$-porous sets in abstract spaces. Abstract Appl. Analysis 2005 (2005), 509-534. | MR