Keywords: Boolean algebra; generalized Boolean algebra; $\frak m$-representability; lattice ordered group; generalized $MV$-algebra; radical class
@article{CMJ_2008_58_3_a17,
author = {Jakub{\'\i}k, J\'an},
title = {On some types of radical classes},
journal = {Czechoslovak Mathematical Journal},
pages = {833--848},
year = {2008},
volume = {58},
number = {3},
mrnumber = {2455941},
zbl = {1174.06322},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a17/}
}
Jakubík, Ján. On some types of radical classes. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 833-848. http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a17/
[1] Chang, C. C.: On the representation of $\alpha$-complete Boolean algebras. Trans. Amer. Math. Soc. 85 (1957), 208-218. | MR | Zbl
[2] Conrad, P.: $K$-radical classes of lattice ordered groups. In: Proc. Conf. Carbondale, Lecture Notes Math 848 Springer Verlag New York (1981), 186-207. | MR | Zbl
[3] Conrad, P., Darnel, M. R.: Subgroups and hulls of Specker lattice ordered groups. Czech. Math. J. 51 (2001), 395-413. | DOI | MR | Zbl
[4] Darnel, M.: Closure operators on radicals of lattice ordered groups. Czech. Math. J. 37 (1987), 51-64. | MR
[5] Dvurečenskij, A.: Pseudo $MV$-algebras are intervals in $\ell$-groups. J. Austral. Math. Soc. 72 (2002), 427-445. | DOI | MR
[6] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. Proc. Fourth Int. Symp. Econ. Inf., Bucharest (1999), 961-968. | MR | Zbl
[7] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras. Multiple Valued Logic 6 (2001), 95-135. | MR | Zbl
[8] Jakubík, J.: Radical mappings and radical classes of lattice ordered groups. Symposia Math. 21 Academic Press New York-London (1977), 451-477. | MR
[9] Jakubík, J.: Radical classes of generalized Boolean algebras. Czech. Math. J. 48 (1998), 253-268. | DOI | MR
[10] Jakubík, J.: Radical classes of $MV$-algebras. Czech. Math. J. 49 (1999), 191-211. | DOI | MR
[11] Jakubík, J.: Direct product decompositions of pseudo $MV$-algebras. Archivum Math. 37 (2001), 131-142. | MR
[12] Jakubík, J.: Torsion classes of Specker lattice ordered groups. Czech. Math. J. 52 (2002), 469-482. | DOI | MR
[13] Loomis, L. H.: On the representation of $\sigma$-complete Boolean algebras. Bull. Amer. Math. Soc. 53 (1947), 757-760. | DOI | MR | Zbl
[14] Pierce, R. S.: Representation theorems for certain Boolean algebras. Proc. Amer. Math. Soc. 10 (1959), 42-50. | DOI | MR | Zbl
[15] Rachůnek, J.: A non-commutative generalization of $MV$-algebras. Czech. Math. J. 52 (2002), 255-273. | DOI | MR
[16] Scott, D.: A new characterization of $\alpha$-representable Boolean algebras. Bull. Amer. Math. Soc. 61 (1955), 522-523.
[17] E. C. Smith, Jr.: A distributivity condition for Boolean algebras. Ann. Math. 64 (1956), 551-561. | DOI | MR | Zbl
[18] Sikorski, R.: On the representation of Boolean algebras as fields of set. Fund. Math. 35 (1958), 247-258. | DOI | MR
[19] Sikorski, R.: Distributivity and representability. Fund. Math. 48 (1959), 95-103. | DOI | MR
[20] Sikorski, R.: Boolean Algebras. Second Edition Springer Verlag Berlin-Göttingen-Heidelberg-New York (1964). | Zbl
[21] Ton, Dao Rong: Product radical classes of $\ell$-groups. Czech. Math. J. 42 (1992), 129-142. | MR