Remarks on discretely absolutely star-Lindelöf spaces
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 823-831
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we prove the following statements: \item {(1)} There exists a Hausdorff Lindelöf space $X$ such that the Alexandroff duplicate $A(X)$ of $X$ is not discretely absolutely star-Lindelöf. \item {(2)} If $X$ is a regular Lindelöf space, then $A(X)$ is discretely absolutely star-Lindelöf. \item {(3)} If $X$ is a normal discretely star-Lindelöf space with $e(X) \omega _1$, then $A(X)$ is discretely absolutely star-Lindelöf.
In this paper, we prove the following statements: \item {(1)} There exists a Hausdorff Lindelöf space $X$ such that the Alexandroff duplicate $A(X)$ of $X$ is not discretely absolutely star-Lindelöf. \item {(2)} If $X$ is a regular Lindelöf space, then $A(X)$ is discretely absolutely star-Lindelöf. \item {(3)} If $X$ is a normal discretely star-Lindelöf space with $e(X) \omega _1$, then $A(X)$ is discretely absolutely star-Lindelöf.
Classification :
54B10, 54D20, 54D55
Keywords: countably compact space; star-Lindelöf space; absolutely star-Lindelöf space; discretely absolutely star-Lindelöf
Keywords: countably compact space; star-Lindelöf space; absolutely star-Lindelöf space; discretely absolutely star-Lindelöf
@article{CMJ_2008_58_3_a16,
author = {Song, Yan-Kui},
title = {Remarks on discretely absolutely {star-Lindel\"of} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {823--831},
year = {2008},
volume = {58},
number = {3},
mrnumber = {2455940},
zbl = {1174.54015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a16/}
}
Song, Yan-Kui. Remarks on discretely absolutely star-Lindelöf spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 823-831. http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a16/