Keywords: ordinary differential equations; mechanical system; potential-energy function; inverse problem of dynamics; orbit; Riemann metric; Stäckel system; Heun equation
@article{CMJ_2008_58_3_a15,
author = {Alboul, L. and Menc{\'\i}a, J. and Ram{\'\i}rez, R. and Sadovskaia, N.},
title = {On the determination of the potential function from given orbits},
journal = {Czechoslovak Mathematical Journal},
pages = {799--821},
year = {2008},
volume = {58},
number = {3},
mrnumber = {2455939},
zbl = {1174.70003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a15/}
}
TY - JOUR AU - Alboul, L. AU - Mencía, J. AU - Ramírez, R. AU - Sadovskaia, N. TI - On the determination of the potential function from given orbits JO - Czechoslovak Mathematical Journal PY - 2008 SP - 799 EP - 821 VL - 58 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a15/ LA - en ID - CMJ_2008_58_3_a15 ER -
Alboul, L.; Mencía, J.; Ramírez, R.; Sadovskaia, N. On the determination of the potential function from given orbits. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 799-821. http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a15/
[1] Arnold, V. I.: Dynamical Systems 3. Viniti Moscow (1985), Russian.
[2] Bertrand, M. I.: Sur la posibilité de déduire d'une seule de lois de Kepler le principe de l'attraction. Comtes rendues 9 (1877).
[3] Bozis, G.: The inverse problem of dynamics: basic facts. Inverse Probl. 11 (1995), 687-708 Mech. 38 (1986), 357. | MR
[4] Charlier, C. L.: Celestial Mechanics (Die Mechanik Des Himmels). Nauka Moscow (1966), Russian. | MR
[5] Dainelli, U.: Sul movimento per una linea qualunque. Giorn. Mat. 18 (1880), Italian.
[6] Duboshin, G. H.: Celestial Mechanics. Nauka Moscow (1968), Russian.
[7] Ermakov, V. P.: Determination of the potential function from given partial integrals. Math. Sbornik, Ser. 4 15 (1881), Russian.
[8] Galiullin, A. S.: Inverse Problems of Dynamics. Mir Publishers Moscow (1984). | MR | Zbl
[9] Joukovski, N. E.: Construction of the potential function from a given family of trajectories. Gostexizdat (1948), 227-242 Russian.
[10] Klein, J.: Espaces variationnels et mécanique. Ann Inst. Fourier 12 (1962), 1-124. | DOI | MR | Zbl
[11] Kratzer, A., Franz, W.: Transzendente Funktionen. Geest & Portig K.-G. Leipzig (1960). | MR | Zbl
[12] Kozlov, V. V.: Dynamical Systems X. General Theory of vortices. Encyclopedia of Math. Sciencies 67. Spinger Berlin (2003). | DOI | MR
[13] Lie, S.: Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordung. Leipzig. Ber. Heft 1.-S (1895), 53-128.
[14] Newton, I.: Philosophiæ Naturalis Principia Mathematica. London (1687).
[15] Puel, F.: Celestial Mechanics 32. ().
[16] Ramírez, R., N., N. Sadovskaia: Inverse problem in celestial mechanic. Atti. Sem. Mat. Fis. Univ. Modena LII (2004), 47-68. | MR
[17] (ed.), A. Ronveaux: Heun's differential equations. Oxford University Press Oxford (1995). | MR | Zbl
[18] Sadovskaia, N.: Inverse problem in theory of ordinary differential equations. PhD. Thesis Univ. Politécnica de Cataluña (2002), Spanish.
[19] Suslov, G. K.: Determination of the power function from given particular integrals. Kiev (1890), Russian.
[20] Szebehely, V.: Open problems on the eve of the next millenium. Celest. Mech. Dyn. Astron. 65 (1997), 205-211. | DOI | MR
[21] Szebehely, V.: On the determination of the potential E. Proverbio, Proc. Int. Mtg. Rotation of the Earth, Bologna, 1974.
[22] Whittaker, E. T.: A Treatise on the Analytic Dynamics of Particles and Rigid Bodies. Cambridge University Press Cambridge (1959). | MR