@article{CMJ_2008_58_3_a12,
author = {Jan\'a\v{c}ek, Ji\v{r}{\'\i}},
title = {Asymptotics of variance of the lattice point count},
journal = {Czechoslovak Mathematical Journal},
pages = {751--758},
year = {2008},
volume = {58},
number = {3},
mrnumber = {2455936},
zbl = {1174.60002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a12/}
}
Janáček, Jiří. Asymptotics of variance of the lattice point count. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 751-758. http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a12/
[1] Bochner, S., Chandrasekharan, K.: Fourier transforms. Princeton University Press (1949). | MR | Zbl
[2] Brandolini, L., Hofmann, S., Iosevich, A.: Sharp rate of average decay of Fourier transform of a bounded set. Geom. Func. Anal. 13 (2003), 671-680. | DOI | MR
[3] Janáček, J.: Variance of periodic measure of bounded set with random position. Comment. Math. Univ. Carolinae 47 (2006), 473-482. | MR
[4] Kendall, D. G.: On the number of lattice points inside a random oval. Quarterly J. Math. 19 (1948), 1-26. | DOI | MR | Zbl
[5] Kendall, D. G., Rankin, R. A.: On the number of points of a given lattice in a random hypersphere. Quarterly J. Math., 2nd Ser. 4 (1953), 178-189. | DOI | MR | Zbl
[6] Matérn, B.: Precision of area estimation: a numerical study. J. Microsc. 153 (1989), 269-283. | DOI
[7] Matheron, G.: Les variables regionalisés et leur estimation. Masson et CIE, Paris (1965).
[8] Rao, R. C.: Linear statistical inference and its applications. 2nd ed. , John Wiley & Sons, New York (1973). | MR | Zbl
[9] Rataj, J.: On set covariance and three-point test sets. Czech. Math. J. 54 (2004), 205-214. | DOI | MR | Zbl
[10] Watson, G. N.: A treatise on the theory of Bessel functions. 2nd edition, Cambridge University Press (1922). | MR
[11] Rudin, W.: Functional Analysis. McGraw-Hill Book Company (1973). | MR | Zbl
[12] Varchenko, A.: Number of lattice points in families of homothetic domains in $\Bbb R^n$. Func. Anal. Appl. 17 (1983), 79-83. | DOI | MR
[13] Wiener, N.: The Fourier integral and certain of its applications. Dover Publications Inc., New York (1933). | MR | Zbl