Keywords: $(LB)$-spaces; weighted spaces of holomorphic functions; dual density condition
@article{CMJ_2008_58_3_a11,
author = {Wolf, Elke},
title = {A characterization of weighted $(LB)$-spaces of holomorphic functions having the dual density condition},
journal = {Czechoslovak Mathematical Journal},
pages = {741--749},
year = {2008},
volume = {58},
number = {3},
mrnumber = {2455935},
zbl = {1174.46014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a11/}
}
TY - JOUR AU - Wolf, Elke TI - A characterization of weighted $(LB)$-spaces of holomorphic functions having the dual density condition JO - Czechoslovak Mathematical Journal PY - 2008 SP - 741 EP - 749 VL - 58 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a11/ LA - en ID - CMJ_2008_58_3_a11 ER -
Wolf, Elke. A characterization of weighted $(LB)$-spaces of holomorphic functions having the dual density condition. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 741-749. http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a11/
[1] Anderson, J. M., Duncan, J.: Duals of Banach spaces of entire functions. Glasgow Math. J. 32 (1990), 215-220. | DOI | MR | Zbl
[2] Bastin, F.: Distinguishedness of weighted Fréchet spaces of continuous functions. Proc. Edinb. Math. Soc., II. Ser. 35 271-283. | DOI | MR | Zbl
[3] Bierstedt, K. D., Bonet, J.: Stefan Heinrich's density condition and the characterization of the distinguished Köthe echelon spaces. Math. Nachr. 135 (1988), 149-180. | DOI | MR
[4] Bierstedt, K. D., Bonet, J.: Dual density conditions in ${(DF)}$-spaces I. Results Math. 14 (1988), 242-274. | DOI | MR | Zbl
[5] Bierstedt, K. D., Bonet, J.: Dual density conditions in ${(DF)}$-spaces {II}. Bull. Soc. Roy. Sci. Liège 57 (1988), 567-589. | MR | Zbl
[6] Bierstedt, K. D., Bonet, J.: Biduality in {($LF$)}-spaces. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. 95 (2001), 171-180. | MR | Zbl
[7] Bierstedt, K. D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on balanced domains. Michigan Math. J. 40 (1993), 271-297. | DOI | MR | Zbl
[8] Bierstedt, K. D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Studia Math. 127 (1998), 137-168. | MR | Zbl
[9] Bierstedt, K. D., Meise, R., Summers, W. H.: A projective description of weighted inductive limits. Trans. Amer. Math. Soc. 272 (1982), 107-160. | DOI | MR | Zbl
[10] Bonet, J., Engliš, M., Taskinen, J.: Weighted $L^{\infty}$-estimates for Bergman projections. Studia Math. 171 (2005), 67-92. | DOI | MR
[11] Heinrich, S.: Ultrapowers of locally convex spaces and applications I. Math. Nachr. 118 (1984), 285-315. | DOI | MR | Zbl
[12] Jarchow, H.: Locally Convex Spaces. Math. Leitfäden, B.G. Teubner, Stuttgart (1981). | MR | Zbl
[13] Köthe, G.: Topological Vector Spaces I. Grundlehren der math. Wiss. 159, Springer-Verlag, New York-Berlin (1969). | MR
[14] Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Graduate Texts in Math. 2, The Clarendon Press, Oxford University Press, New York (1997). | MR | Zbl
[15] Pérez-Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North-Holland Math. Stud. 131, Amsterdam (1987). | MR
[16] Peris, A.: Some results on Fréchet spaces with the density condition. Arch. Math. (Basel) 59 (1992), 286-293. | DOI | MR | Zbl
[17] Wolf, E.: Weighted $(LB)$-spaces of holomorphic functions and the dual density conditions. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 99 (2005), 149-165. | MR | Zbl
[18] Wolf, E.: The density condition and distinguishedness of weighted Fréchet spaces of holomorphic functions. J. Math. Anal. Appl. 327 (2007), 530-546. | DOI | MR