A non commutative generalization of $\star$-autonomous lattices
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 725-740 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Pseudo $\star $-autonomous lattices are non-commutative generalizations of $\star $-autonomous lattices. It is proved that the class of pseudo $\star $-autonomous lattices is a variety of algebras which is term equivalent to the class of dualizing residuated lattices. It is shown that the kernels of congruences of pseudo $\star $-autonomous lattices can be described as their normal ideals.
Pseudo $\star $-autonomous lattices are non-commutative generalizations of $\star $-autonomous lattices. It is proved that the class of pseudo $\star $-autonomous lattices is a variety of algebras which is term equivalent to the class of dualizing residuated lattices. It is shown that the kernels of congruences of pseudo $\star $-autonomous lattices can be described as their normal ideals.
Classification : 03B47, 03B50, 06D35, 06F05, 06F15
Keywords: $\star$-autonomous lattice; pseudo $\star$-autonomous lattice; residuated lattice; ideal; normal ideal; congruence
@article{CMJ_2008_58_3_a10,
     author = {Emanovsk\'y, P. and Rach\r{u}nek, J.},
     title = {A non commutative generalization of $\star$-autonomous lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {725--740},
     year = {2008},
     volume = {58},
     number = {3},
     mrnumber = {2455934},
     zbl = {1174.06008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a10/}
}
TY  - JOUR
AU  - Emanovský, P.
AU  - Rachůnek, J.
TI  - A non commutative generalization of $\star$-autonomous lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 725
EP  - 740
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a10/
LA  - en
ID  - CMJ_2008_58_3_a10
ER  - 
%0 Journal Article
%A Emanovský, P.
%A Rachůnek, J.
%T A non commutative generalization of $\star$-autonomous lattices
%J Czechoslovak Mathematical Journal
%D 2008
%P 725-740
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a10/
%G en
%F CMJ_2008_58_3_a10
Emanovský, P.; Rachůnek, J. A non commutative generalization of $\star$-autonomous lattices. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 725-740. http://geodesic.mathdoc.fr/item/CMJ_2008_58_3_a10/

[1] Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. Algebra Comput. 13 (2003), 437-461. | DOI | MR | Zbl

[2] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Springer Berlin-Heidelberg-New York (1981). | MR | Zbl

[3] Galatos, N., Tsinakis, C.: Generalized MV-algebras. J. Algebra 283 (2005), 254-291. | DOI | MR | Zbl

[4] Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras. Mult.-valued Logic 6 (2001), 95-135. | MR | Zbl

[5] Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50 (1987), 1-102. | DOI | MR | Zbl

[6] Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: Ordered Algebraic Structures J. Martinez Kluwer Dordrecht (2002), 19-56. | MR | Zbl

[7] Leustean, I.: Non-commutative Łukasiewicz propositional logic. Arch. Math. Logic 45 (2006), 191-213. | DOI | MR | Zbl

[8] Paoli, F.: Substructural Logic: A Primer. Kluwer Dordrecht (2002). | MR

[9] Paoli, F.: $\star$-autonomous lattices. Stud. Log. 79 (2005), 283-304. | DOI | MR

[10] Paoli, F.: $\star$-autonomous lattices and fuzzy sets. Soft Comput. 10 (2006), 607-617. | DOI | MR

[11] Rachůnek, J.: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 255-273. | DOI | MR

[12] Rachůnek, J.: Prime spectra of non-commutative generalizations of $MV$-algebras. Algebra Univers. 48 (2002), 151-169. | DOI | MR

[13] Yetter, D. N.: Quantales and (noncommutative) linear logic. J. Symb. Log. 55 (1990), 41-64. | DOI | MR | Zbl