@article{CMJ_2008_58_2_a8,
author = {Bandini, Andrea},
title = {3-Selmer groups for curves $y^2=x^3+a$},
journal = {Czechoslovak Mathematical Journal},
pages = {429--445},
year = {2008},
volume = {58},
number = {2},
mrnumber = {2411099},
zbl = {1174.11048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a8/}
}
Bandini, Andrea. 3-Selmer groups for curves $y^2=x^3+a$. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 429-445. http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a8/
[1] A. Bandini: Three-descent and the Birch and Swinnerton-Dyer conjecture. Rocky Mt. J. Math. 34 (2004), 13–27. | DOI | MR | Zbl
[2] J. W. S. Cassels: Arithmetic on curves of genus 1. VIII: On conjectures of Birch and Swinnerton-Dyer. J. Reine Angew. Math. 217 (1965), 180–199. | MR | Zbl
[3] Z. Djabri, E. F. Schaefer, N. P. Smart: Computing the $p$-Selmer group of an elliptic curve. Trans. Am. Math. Soc. 352 (2000), 5583–5597. | DOI | MR
[4] K. Rubin: Tate-Shafarevich groups and $L$-functions of elliptic curves with complex multiplication. Invent. Math. 89 (1987), 527–560. | DOI | MR | Zbl
[5] K. Rubin: The “main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math. 103 (1991), 25–68. | DOI | MR | Zbl
[6] P. Satgé: Groupes de Selmer et corpes cubiques. J. Number Theory 23 (1986), 294–317. | DOI | MR
[7] E. F. Schaefer, M. Stoll: How to do a $p$-descent on an elliptic curve. Trans. Am. Math. Soc. 356 (2004), 1209–1231. | DOI | MR
[8] E. F. Schaefer: Class groups and Selmer groups. J. Number Theory 56 (1996), 79–114. | DOI | MR | Zbl
[9] J. H. Silverman: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Vol. 106, Springer, New York, 1986. | MR | Zbl
[10] J. H. Silverman: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Vol. 151, Springer, New York, 1994. | DOI | MR | Zbl
[11] M. Stoll: On the arithmetic of the curves $y^2=x^l+A$ and their Jacobians. J. Reine Angew. Math. 501 (1998), 171–189. | DOI | MR
[12] M. Stoll: On the arithmetic of the curves $y^2=x^l+A$. II. J. Number Theory 93 (2002), 183–206. | DOI | MR
[13] J. Top: Descent by 3-isogeny and 3-rank of quadratic fields. In: Advances in Number Theory, F. Q. Gouvea, N. Yui (eds.), Clarendon Press, Oxford, 1993, pp. 303–317. | MR | Zbl