Strong separativity over exchange rings
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 417-428 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An exchange ring $R$ is strongly separative provided that for all finitely generated projective right $R$-modules $A$ and $B$, $A\oplus A\cong A \oplus B\Rightarrow A\cong B$. We prove that an exchange ring $R$ is strongly separative if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exist $u,v\in S$ such that $au=bv$ and $Su+Sv=S$ if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exists a right invertible matrix $\begin{pmatrix} a\\ ** \end{pmatrix} \in M_2(S)$. The dual assertions are also proved.
An exchange ring $R$ is strongly separative provided that for all finitely generated projective right $R$-modules $A$ and $B$, $A\oplus A\cong A \oplus B\Rightarrow A\cong B$. We prove that an exchange ring $R$ is strongly separative if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exist $u,v\in S$ such that $au=bv$ and $Su+Sv=S$ if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exists a right invertible matrix $\begin{pmatrix} a\\ ** \end{pmatrix} \in M_2(S)$. The dual assertions are also proved.
Classification : 16D70, 16E50, 19B10, 19E99
Keywords: strong separativity; exchange ring; regular ring
@article{CMJ_2008_58_2_a7,
     author = {Chen, Huanyin},
     title = {Strong separativity over exchange rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {417--428},
     year = {2008},
     volume = {58},
     number = {2},
     mrnumber = {2411098},
     zbl = {1166.16002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a7/}
}
TY  - JOUR
AU  - Chen, Huanyin
TI  - Strong separativity over exchange rings
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 417
EP  - 428
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a7/
LA  - en
ID  - CMJ_2008_58_2_a7
ER  - 
%0 Journal Article
%A Chen, Huanyin
%T Strong separativity over exchange rings
%J Czechoslovak Mathematical Journal
%D 2008
%P 417-428
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a7/
%G en
%F CMJ_2008_58_2_a7
Chen, Huanyin. Strong separativity over exchange rings. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 417-428. http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a7/

[1] P. Ara: Extensions of exchange rings. J.  Algebra 197 (1997), 409–423. | DOI | MR | Zbl

[2] P.  Ara, K. R.  Goodearl, K. C.  O’Meara, E.  Pardo: Diagonalization of matrices over regular rings. Linear Algebra Appl. 265 (1997), 147–163. | MR

[3] P.  Ara, K. R.  Goodearl, K. C.  O’Meara, E.  Pardo: Separative cancellation for projective modules over exchange rings. Isr. J.  Math. 105 (1998), 105–137. | DOI | MR

[4] P.  Ara, K. C.  O’Meara, D. V.  Tyukavkin: Cancellation of projective modules over regular rings with comparability. J. Pure Appl. Algebra 107 (1996), 19–38. | MR

[5] G.  Brookfield: Direct sum cancellation of Noetherian modules. J.  Algebra 200 (1998), 207–224. | DOI | MR | Zbl

[6] H.  Chen: Exchange rings over which every regular matrix admits diagonal reduction. J.  Algebra Appl. 3 (2004), 207–217. | DOI | MR | Zbl

[7] K. R.  Goodearl: Von Neumann Regular Rings. Pitman, London-San Francisco-Melbourne, 1979; Krieger, Malabar (2nd edition), 1991. | MR | Zbl

[8] K. R.  Goodearl: Von Neumann regular rings and direct sum decomposition problems. Abelian Groups and Modules, Kluwer, Dordrecht, 1995, pp. 249–255. | MR | Zbl

[9] P.  Menal, J.  Moncasi: On regular rings with stable range  $2$. J.  Pure Appl. Algebra 24 (1982), 25–40. | DOI | MR

[10] W. K.  Nicholson: On exchange rings. Commun. Algebra 25 (1997), 1917–1918. | DOI | MR | Zbl

[11] K. C.  O’Meara, C.  Vinsonhaler: Separative cancellation and multiple isomorphism in torsion-free Abelian groups. J. Algebra 221 (1999), 536–550. | MR

[12] E.  Pardo: Comparability, separativity and exchange rings. Commun. Algebra 24 (1996), 2915–2929. | DOI | MR | Zbl

[13] A. A.  Tuganbaev: Rings Close to Regular. Kluwer, Dordrecht, 2002. | MR | Zbl

[14] H.  Zhang, W.  Tong: The cancellable range of rings. Arch. Math. 85 (2005), 327–334. | DOI | MR