Extending modules relative to a torsion theory
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 381-393 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An $R$-module $M$ is said to be an extending module if every closed submodule of $M$ is a direct summand. In this paper we introduce and investigate the concept of a type 2 $\tau $-extending module, where $\tau $ is a hereditary torsion theory on $\mathop {\text{Mod}}$-$R$. An $R$-module $M$ is called type 2 $\tau $-extending if every type 2 $\tau $-closed submodule of $M$ is a direct summand of $M$. If $\tau _I$ is the torsion theory on $\mathop {\text{Mod}}$-$R$ corresponding to an idempotent ideal $I$ of $R$ and $M$ is a type 2 $\tau _I$-extending $R$-module, then the question of whether or not $M/MI$ is an extending $R/I$-module is investigated. In particular, for the Goldie torsion theory $\tau _G$ we give an example of a module that is type 2 ${\tau }_G$-extending but not extending.
An $R$-module $M$ is said to be an extending module if every closed submodule of $M$ is a direct summand. In this paper we introduce and investigate the concept of a type 2 $\tau $-extending module, where $\tau $ is a hereditary torsion theory on $\mathop {\text{Mod}}$-$R$. An $R$-module $M$ is called type 2 $\tau $-extending if every type 2 $\tau $-closed submodule of $M$ is a direct summand of $M$. If $\tau _I$ is the torsion theory on $\mathop {\text{Mod}}$-$R$ corresponding to an idempotent ideal $I$ of $R$ and $M$ is a type 2 $\tau _I$-extending $R$-module, then the question of whether or not $M/MI$ is an extending $R/I$-module is investigated. In particular, for the Goldie torsion theory $\tau _G$ we give an example of a module that is type 2 ${\tau }_G$-extending but not extending.
Classification : 16D50, 16D70, 16D90, 16S90
Keywords: torsion theory; extending module; closed submodule
@article{CMJ_2008_58_2_a5,
     author = {Do\u{g}ru\"oz, Semra},
     title = {Extending modules relative to a torsion theory},
     journal = {Czechoslovak Mathematical Journal},
     pages = {381--393},
     year = {2008},
     volume = {58},
     number = {2},
     mrnumber = {2411096},
     zbl = {1166.16014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a5/}
}
TY  - JOUR
AU  - Doğruöz, Semra
TI  - Extending modules relative to a torsion theory
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 381
EP  - 393
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a5/
LA  - en
ID  - CMJ_2008_58_2_a5
ER  - 
%0 Journal Article
%A Doğruöz, Semra
%T Extending modules relative to a torsion theory
%J Czechoslovak Mathematical Journal
%D 2008
%P 381-393
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a5/
%G en
%F CMJ_2008_58_2_a5
Doğruöz, Semra. Extending modules relative to a torsion theory. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 381-393. http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a5/

[1] F. W. Anderson and K. R. Fuller: Rings and categories of modules. Springer-Verlag, New York, 1974. | MR

[2] A. W. Chatters and C. R. Hajarnavis: Rings in which every complement right ideal is a direct summand. Quart. J. Math. Oxford. 28 (1977), 61–80. | DOI | MR

[3] P. E. Bland: Topics in torsion theory. Math. Research, Berlin, Wiley-VCH Verlag, p. 103, 1998. | MR | Zbl

[4] N. Viet Dung, D. Van Huynh, P. F. Smith and R. Wisbauer: Extending modules. Longman, Harlow, 1994. | MR

[5] S. Doğruöz and P. F. Smith: Modules which are extending relative to module classes. Communications in Algebra 26 (1998), 1699–1721. | DOI | MR

[6] S. Doğruöz and P. F. Smith: Modules which are weak extending Relative to Module Classes. Acta Math. Hungarica 87 (2000), 1–10. | DOI | MR

[7] S. Doğruöz: Classes of extending modules associated with a torsion theory. East-west J. Math. (2007), to appear. | MR

[8] K. R. Goodearl and R. B. Warfield: An introduction to noncommutative Noetherian rings. London Math. Society Student Texts 16 (1989).

[9] A. Harmanci and P. F. Smith: Finite direct sums of CS-modules. Houston J. Math. 19 (1993), 523–532. | MR

[10] S. G. Jonathan: Torsion theories. Longman Scientific and Technical, 1986. | MR | Zbl

[11] M. A. Kamal and B. J. Muller: Extending modules over commutative domains. Osaka J. Math. 25 (1988), 531–538. | MR

[12] B. Stenström: Rings of Quotients. Springer-Verlag: Berlin, 1975. | MR

[13] P. F. Smith, Ana M. de Viola-Prioli and Jorge E. Viola-Prioli: Modules complemented with respect to a torsion theory. Communications in Algebra 25 (1997), 1307–1326. | DOI | MR

[14] L. Zhongkui: On X-Extending and X-Continuous modules. Communications in Algebra 29 (2001), 2407–2418. | DOI | MR | Zbl