@article{CMJ_2008_58_2_a3,
author = {\v{S}vr\v{c}ek, Filip},
title = {Interior and closure operators on bounded residuated lattice ordered monoids},
journal = {Czechoslovak Mathematical Journal},
pages = {345--357},
year = {2008},
volume = {58},
number = {2},
mrnumber = {2411094},
zbl = {1174.06323},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a3/}
}
Švrček, Filip. Interior and closure operators on bounded residuated lattice ordered monoids. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 345-357. http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a3/
[1] P. Bahls, J. Cole, N. Galatos, P. Jipsen and C. Tsinakis: Cancellative residuated lattices. Alg. Univ. 50 (2003), 83–106. | DOI | MR
[2] K. Blount and C. Tsinakis: The structure of residuated lattices. Intern. J. Alg. Comp. 13 (2003), 437–461. | DOI | MR
[3] R. O. L. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. | MR
[4] A. Dvurečenskij: States on pseudo $MV$-algebras. Studia Logica 68 (2001), 301–327. | DOI | MR
[5] A. Dvurečenskij: Every linear pseudo $BL$-algebra admits a state. Soft Computing (2006).
[6] A. Dvurečenskij and M. Hyčko: On the existence of states for linear pseudo $BL$-algebras. Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 53 (2005), 93–110. | MR
[7] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. | MR
[8] A. Dvurečenskij and J. Rachůnek: On Riečan and Bosbach states for bounded $Rl$-monoids. (to appear).
[9] A. Dvurečenskij and J. Rachůnek: Probabilistic averaging in bounded $Rl$-monoids. Semigroup Forum 72 (2006), 190–206. | MR
[10] G. Georgescu and A. Iorgulescu: Pseudo-$MV$-algebras. Multiple Valued Logic 6 (2001), 95–135. | MR
[11] A. di Nola, G. Georgescu and A. Iorgulescu: Pseudo-$BL$-algebras I. Multiple Valued Logic 8 (2002), 673–714. | MR
[12] A. di Nola, G. Georgescu and A. Iorgulescu: Pseudo-$BL$-algebras II. Multiple Valued Logic 8 (2002), 715–750. | MR
[13] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer, Amsterdam, 1998. | MR
[14] P. Jipsen and C. Tsinakis: A survey of residuated lattices. Ordered algebraic structures (ed. J. Martinez), Kluwer Acad. Publ. Dordrecht, 2002, pp. 19–56. | MR
[15] T. Kovář: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis Palacký University, Olomouc, 1996.
[16] J. Kühr: Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis, Palacký Univ., Olomouc, 2003. | MR
[17] J. Kühr: Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids. Acta Univ. Palacki. Olomouc, Mathematica 43 (2004), 105–112. | MR
[18] J. Kühr: Ideals of noncommutative ${\mathcal{D}}Rl$-monoids. Czech. Math. J. 55 (2002), 97–111. | MR
[19] J. Rachůnek: $DRl$-semigroups and $MV$-algebras. Czech. Math. J. 48 (1998), 365–372. | DOI
[20] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DRl_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441. | MR
[21] J. Rachůnek: A duality between algebras of basic logic and bounded representable $DRl$-monoids. Math. Bohem. 126 (2001), 561–569. | MR
[22] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czech. Math. J. 52 (2002), 255–273. | DOI | MR
[23] J. Rachůnek and V. Slezák: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures. Math. Slovaca 56 (2006), 223–233. | MR
[24] J. Rachůnek and D. Šalounová: Local bounded commutative residuated $l$-monoids. (to appear). | MR
[25] J. Rachůnek and F. Švrček: $MV$-algebras with additive closure operators. Acta Univ. Palacki., Mathematica 39 (2000), 183–189.
[26] F. Švrček: Operators on $GMV$-algebras. Math. Bohem. 129 (2004), 337–347. | MR
[27] H. Rasiowa and R. Sikorski: The Mathematics of Metamathematics. Panstw. Wyd. Nauk., Warszawa, 1963. | MR
[28] K. L. N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. | DOI | MR | Zbl
[29] E. Turunen: Mathematics Behind Fuzzy Logic. Physica-Verlag, Heidelberg-New York, 1999. | MR | Zbl