On torsionfree classes which are not precover classes
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 561-568 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the class of all exact torsion theories the torsionfree classes are cover (precover) classes if and only if the classes of torsionfree relatively injective modules or relatively exact modules are cover (precover) classes, and this happens exactly if and only if the torsion theory is of finite type. Using the transfinite induction in the second half of the paper a new construction of a torsionfree relatively injective cover of an arbitrary module with respect to Goldie’s torsion theory of finite type is presented.
In the class of all exact torsion theories the torsionfree classes are cover (precover) classes if and only if the classes of torsionfree relatively injective modules or relatively exact modules are cover (precover) classes, and this happens exactly if and only if the torsion theory is of finite type. Using the transfinite induction in the second half of the paper a new construction of a torsionfree relatively injective cover of an arbitrary module with respect to Goldie’s torsion theory of finite type is presented.
Classification : 16D50, 16D90, 16S90, 18E40
Keywords: hereditary torsion theory; exact; noetherian and perfect torsion theory; Goldie’s torsion theory; precover class; cover class; precover and cover of a module
@article{CMJ_2008_58_2_a18,
     author = {Bican, Ladislav},
     title = {On torsionfree classes which are not precover classes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {561--568},
     year = {2008},
     volume = {58},
     number = {2},
     mrnumber = {2411109},
     zbl = {1166.16013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a18/}
}
TY  - JOUR
AU  - Bican, Ladislav
TI  - On torsionfree classes which are not precover classes
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 561
EP  - 568
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a18/
LA  - en
ID  - CMJ_2008_58_2_a18
ER  - 
%0 Journal Article
%A Bican, Ladislav
%T On torsionfree classes which are not precover classes
%J Czechoslovak Mathematical Journal
%D 2008
%P 561-568
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a18/
%G en
%F CMJ_2008_58_2_a18
Bican, Ladislav. On torsionfree classes which are not precover classes. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 561-568. http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a18/

[1] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules. Graduate Texts in Mathematics, Springer-Verlag, 1974. | MR

[2] L. Bican: Torsionfree precovers. Contributions to General Algebra 15, Proceedings of the Klagenfurt Conference 2003 (AAA 66), Verlag Johannes Heyn, Klagenfurt 2004 15 (2004), 1–6. | MR | Zbl

[3] L. Bican: Relatively exact modules. Comment. Math. Univ. Carolinae 44 (2003), 569–574. | MR | Zbl

[4] L. Bican: Precovers and Goldie’s torsion theory. Math. Bohem. 128 (2003), 395–400. | MR | Zbl

[5] L. Bican: On precover classes. Ann. Univ. Ferrara Sez. VII Sc. Mat. LI (2005), 61–67. | MR | Zbl

[6] L. Bican, R. El Bashir and E. Enochs: All modules have flat covers. Proc. London Math. Society 33 (2001), 649–652. | MR

[7] L. Bican and B. Torrecillas: Precovers. Czech. Math. J. 53 (2003), 191–203. | MR

[8] L. Bican and B. Torrecillas: On covers. J. Algebra 236 (2001), 645–650. | DOI | MR

[9] L. Bican and B. Torrecillas: On the existence of relative injective covers. Acta Math. Hungar. 95 (2002), 178–186. | MR

[10] L. Bican and B. Torrecillas: Relative exact covers. Comment. Math. Univ. Carolinae 42 (2001), 477–487. | MR

[11] L. Bican, T. Kepka and P. Němec: Rings, Modules, and Preradicals. Marcel Dekker, New York, 1982. | MR

[12] J. Golan: Torsion Theories. Pitman Monographs and Surveys in Pure an Applied Matematics, 29, Longman Scientific and Technical, 1986. | MR | Zbl

[13] J. R. García Rozas and B. Torrecillas: On the existence of covers by injective modules relative to a torsion theory. Comm. Alg. 24 (1996), 1737–1748. | DOI | MR

[14] S. H. Rim and M. L. Teply: On coverings of modules. Tsukuba J. Math. 24 (2000), 15–20. | DOI | MR

[15] M. L. Teply: Torsion-free covers II. Israel J. Math. 23 (1976), 132–136. | MR | Zbl

[16] M. L. Teply: Some aspects of Goldie’s torsion theory. Pacif. J. Math. 29 (1969), 447–459. | DOI | MR | Zbl

[17] J. Xu: Flat Covers of Modules. Lecture Notes in Mathematics 1634, Springer Verlag Berlin-Heidelberg-New York, 1996. | MR | Zbl