On a sub-supersolution method for the prescribed mean curvature problem
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 541-560 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.
The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.
Classification : 35J25, 35J60, 35J85, 47H30, 47J20, 53A10
Keywords: variational inequality; sub-supersolution; enclosure; extremal solution; prescribed mean curvature problem
@article{CMJ_2008_58_2_a17,
     author = {Le, Vy Khoi},
     title = {On a sub-supersolution method for the prescribed mean curvature problem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {541--560},
     year = {2008},
     volume = {58},
     number = {2},
     mrnumber = {2411108},
     zbl = {1174.35052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a17/}
}
TY  - JOUR
AU  - Le, Vy Khoi
TI  - On a sub-supersolution method for the prescribed mean curvature problem
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 541
EP  - 560
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a17/
LA  - en
ID  - CMJ_2008_58_2_a17
ER  - 
%0 Journal Article
%A Le, Vy Khoi
%T On a sub-supersolution method for the prescribed mean curvature problem
%J Czechoslovak Mathematical Journal
%D 2008
%P 541-560
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a17/
%G en
%F CMJ_2008_58_2_a17
Le, Vy Khoi. On a sub-supersolution method for the prescribed mean curvature problem. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 541-560. http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a17/

[1] R. Acar and C. Vogel: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994), 1217–1229. | DOI | MR

[2] L. Ambrosio, S. Mortola and V. Tortorelli: Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl. 70 (1991), 269–323. | MR

[3] G. Anzellotti and M. Giaquinta: ${BV}$ functions and traces. Rend. Sem. Mat. Univ. Padova 60 (1978), 1–21. | MR

[4] F. Atkinson, L. Peletier and J. Serrin: Ground states for the prescribed mean curvature equation: the supercritical case. Nonlinear Diffusion Equations and Their Equilibrium States, Math. Sci. Res. Inst. Publ., vol. 12, 1988, pp. 51–74. | MR

[5] E. Bombieri and E. Giusti: Local estimates for the gradient of non-parametric surfaces of prescribed mean curvature. Comm. Pure Appl. Math. 26 (1973), 381–394. | DOI | MR

[6] G. Buttazzo: Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Research Notes in Mathematics, vol. 207, Longman Scientific & Technical, Harlow, 1989. | MR | Zbl

[7] S. Carl and V. K. Le: Sub-supersolution method for quasilinear parabolic variational inequalities. J. Math. Anal. Appl. 293 (2004), 269–284. | DOI | MR

[8] S. Carl, V. K. Le and D. Motreanu: Existence and comparison results for quasilinear evolution hemivariational inequalities. Electron. J. Differential Equations 57 (2004), 1–17. | MR

[9] S. Carl, V. K. Le and D. Motreanu: The sub-supersolution method and extremal solutions for quasilinear hemivariational inequalities. Differential Integral Equations 17 (2004), 165–178. | MR

[10] S. Carl, V. K. Le and D. Motreanu: Existence and comparison principles for general quasilinear variational-hemivariational inequalities. J. Math. Anal. Appl. 302 (2005), 65–83. | DOI | MR

[11] M. Carriero, A. Leaci and E. Pascali: On the semicontinuity and the relaxation for integrals with respect to the Lebesgue measure added to integrals with respect to a Radon measure. Ann. Mat. Pura Appl. 149 (1987), 1–21. | DOI | MR

[12] M. Carriero, Dal Maso, A. Leaci and E. Pascali: Relaxation of the nonparametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988), 359–396. | MR

[13] C. V. Coffman and W. K. Ziemer: A prescribed mean curvature problem on domains without radial symmetry. SIAM J. Math. Anal. 22 (1991), 982–990. | DOI | MR

[14] M. Conti and F. Gazzola: Existence of ground states and free-boundary problems for the prescribed mean curvature equation. Adv. Differential Equations 7 (2002), 667–694. | MR

[15] G. Dal-Maso: An introduction to $\Gamma $-convergence. Birkhäuser, 1993. | MR | Zbl

[16] I. Ekeland and R. Temam: Analyse convexe et problèmes variationnels. Dunod, 1974. | MR

[17] L. C. Evans and R. F. Gariepy: Measure theory and fine properties of functions. CRC Press, Boca Raton, 1992. | MR

[18] R. Finn: Equilibrium capillary surfaces. Springer, New York, 1986. | MR | Zbl

[19] F. Gastaldi and F. Tomarelli: Some remarks on nonlinear noncoercive variational inequalities. Boll. Un. Math. Ital. 7 (1987), 143–165. | MR

[20] C. Gerhardt: Existence, regularity, and boundary behaviour of generalized surfaces of prescribed mean curvature. Math. Z. 139 (1974), 173–198. | DOI | MR | Zbl

[21] C. Gerhardt: On the regularity of solutions to variational problems in $BV(\Omega )$. Math. Z. 149 (1976), 281–286. | DOI | MR | Zbl

[22] C. Gerhardt: Boundary value problems for surfaces of prescribed mean curvature. J. Math. Pures Appl. 58 (1979), 75–109. | MR | Zbl

[23] D. Gilbarg and N. Trudinger: Elliptic partial differential equations of second order. Springer, Berlin, 1983. | MR

[24] E. Giusti: Minimal surfaces and functions of bounded variations. Birkhäuser, Basel, 1984. | MR

[25] C. Goffman and J. Serrin: Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964), 159–178. | DOI | MR

[26] P. Habets and P. Omari: Positive solutions of an indefinite prescribed mean curvature problem on a general domain. Adv. Nonlinear Studies 4 (2004), 1–13. | DOI | MR

[27] N. Ishimura: Nonlinear eigenvalue problem associated with the generalized capillarity equation. J. Fac. Sci. Univ. Tokyo 37 (1990), 457–466. | MR | Zbl

[28] T. Kusahara and H. Usami: A barrier method for quasilinear ordinary differential equations of the curvature type. Czech. Math. J. 50 (2000), 185–196. | DOI | MR

[29] V. K. Le: Existence of positive solutions of variational inequalities by a subsolution–supersolution approach. J. Math. Anal. Appl. 252 (2000), 65–90. | DOI | MR | Zbl

[30] V. K. Le: Subsolution-supersolution method in variational inequalities. Nonlinear Analysis 45 (2001), 775–800. | DOI | MR | Zbl

[31] V. K. Le: Some existence results on nontrivial solutions of the prescribed mean curvature equation. Adv. Nonlinear Studies 5 (2005), 133–161. | MR | Zbl

[32] V. K. Le and K. Schmitt: Sub-supersolution theorems for quasilinear elliptic problems: A variational approach. Electron. J. Differential Equations (2004), 1–7. | MR

[33] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969. | MR | Zbl

[34] M. Marzocchi: Multiple solutions of quasilinear equations involving an area-type term. J. Math. Anal. Appl. 196 (1995), 1093–1104. | DOI | MR | Zbl

[35] J. Mawhin and M. Willem: Critical point theory and Hamiltonian systems. Springer Verlag, New York, 1989. | MR

[36] M. Miranda: Dirichlet problem with $L^1$ data for the non-homogeneous minimal surface equation. Indiana Univ. Math. J. 24 (1974), 227–241. | DOI | MR

[37] W. M. Ni and J. Serrin: Existence and non-existence theorems for quasilinear partial differential equations the anomalous case. Accad. Naz. Lincei, Atti dei Convegni 77 (1985), 231–257.

[38] W. M. Ni and J. Serrin: Non-existence theorems for quasilinear partial differential equations. Rend. Circ. Math. Palermo 2 (1985), 171–185. | MR

[39] E. S. Noussair, C. A. Swanson and Y. Jianfu: A barrier method for mean curvature problems. Nonlinear Anal. 21 (1993), 631–641. | DOI | MR

[40] L. Peletier and J. Serrin: Ground states for the prescribed mean curvature equation. Proc. Amer. Math. Soc. 100 (1987), 694–700. | DOI | MR

[41] W. Ziemer: Weakly differentiable functions. Springer, New York, 1989. | MR | Zbl