Keywords: Lorentz-Karamata spaces; equivalent quasi-norms; weighted norm inequalities; fractional maximal operators; Riesz potentials
@article{CMJ_2008_58_2_a16,
author = {Edmunds, D. E. and Opic, B.},
title = {Alternative characterisations of {Lorentz-Karamata} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {517--540},
year = {2008},
volume = {58},
number = {2},
mrnumber = {2411107},
zbl = {1174.46019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a16/}
}
Edmunds, D. E.; Opic, B. Alternative characterisations of Lorentz-Karamata spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 517-540. http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a16/
[1] C. Bennett and K. Rudnick: On Lorentz-Zygmund spaces. Dissertationes Math. 175 (1980), 1–72. | MR
[2] C. Bennett and R. Sharpley: Interpolation of operators. Academic Press, New York, 1988. | MR
[3] N. H. Bingham, C. M. Goldie and J. L. Teugels: Regular variation. Cambridge Univ. Press, Cambridge, 1987. | MR
[4] A. P. Calderón: Spaces between $L^1$ and $L^{\infty }$ and the theorem of Marcinkiewicz. Studia Math. 26 (1966), 273–299. | MR
[5] D. E. Edmunds and W. D. Evans: Hardy operators, function spaces and embeddings. Springer-Verlag, Berlin-Heidelberg, 2004. | MR
[6] D. E. Edmunds, P. Gurka and B. Opic: Double exponential integrability of convolution operators in generalised Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 (1995), 19–43. | MR
[7] D. E. Edmunds, P. Gurka and B. Opic: On embeddings of logarithmic Bessel potential spaces. J. Functional Anal. 146 (1997), 116–150. | DOI | MR
[8] D. E. Edmunds and B. Opic: Boundedness of fractional maximal operators between classical and weak-type Lorentz spaces. Dissertationes Math. 410 (2002), 1–53. | DOI | MR
[9] D. E. Edmunds and B. Opic: Equivalent quasi-norms on Lorentz spaces. Proc. Amer. Math. Soc. 131 (2003), 745–754. | DOI | MR
[10] W. D. Evans and B. Opic: Real interpolation with logarithmic functors and reiteration. Canad. J. Math. 52 (2000), 920–960. | DOI | MR
[11] A. Gogatishvili, B. Opic and W. Trebels: Limiting reiteration for real interpolation with slowly varying functions. Math. Nachr. 278 (2005), 86–107. | DOI | MR
[12] S. Lai: Weighted norm inequalities for general operators on monotone functions. Trans. Amer. Math. Soc. 340 (1993), 811–836. | DOI | MR | Zbl
[13] J. S. Neves: Lorentz-Karamata spaces, Bessel and Riesz potentials and embeddings. Dissertationes Math. 405 (2002), 1–46. | DOI | MR | Zbl
[14] B. Opic: New characterizations of Lorentz spaces. Proc. Royal Soc. Edinburgh 133A (2003), 439–448. | MR | Zbl
[15] B. Opic: On equivalent quasi-norms on Lorentz spaces. In Function Spaces, Differential Operators and Nonlinear Analysis. The Hans Triebel Aniversary Volume, D. Haroske, T. Runst, H.-J. Schmeisser (eds.), Birkhäuser Verlag, Basel/Switzerland, 2003, pp. 415–426. | MR | Zbl
[16] B. Opic and W. Trebels: Sharp embeddings of Bessel potential spaces with logarithmic smoothness. Math. Proc. Camb. Phil. Soc. 134 (2003), 347–384. | DOI | MR