Keywords: strongly continuous semigroups; differential operators; positive linear operators; Black-Scholes operator
@article{CMJ_2008_58_2_a10,
author = {Attalienti, Antonio and Rasa, Ioan},
title = {Shape-preserving properties and asymptotic behaviour of the semigroup generated by the {Black-Scholes} operator},
journal = {Czechoslovak Mathematical Journal},
pages = {457--467},
year = {2008},
volume = {58},
number = {2},
mrnumber = {2411101},
zbl = {1174.47037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a10/}
}
TY - JOUR AU - Attalienti, Antonio AU - Rasa, Ioan TI - Shape-preserving properties and asymptotic behaviour of the semigroup generated by the Black-Scholes operator JO - Czechoslovak Mathematical Journal PY - 2008 SP - 457 EP - 467 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a10/ LA - en ID - CMJ_2008_58_2_a10 ER -
%0 Journal Article %A Attalienti, Antonio %A Rasa, Ioan %T Shape-preserving properties and asymptotic behaviour of the semigroup generated by the Black-Scholes operator %J Czechoslovak Mathematical Journal %D 2008 %P 457-467 %V 58 %N 2 %U http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a10/ %G en %F CMJ_2008_58_2_a10
Attalienti, Antonio; Rasa, Ioan. Shape-preserving properties and asymptotic behaviour of the semigroup generated by the Black-Scholes operator. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 457-467. http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a10/
[1] F. Altomare, R. Amiar: Approximation by positive operators of the $C_0$-semigroups associated with one-dimensional diffusion equations. Part II. Numer. Funct. Anal. Optimiz. 26 (2005), 17–33. | DOI | MR
[2] F. Altomare, R. Amiar: Corrigendum to: Approximation by positive operators of the $C_0$-semigroups associated with one-dimensional diffusion equations, Part II. Numer. Funct. Anal. Optimiz. 26 (2005), 17–33. | DOI | MR
[3] F. Altomare, A. Attalienti: Degenerate evolution equations in weighted continuous function spaces, Markov processes and the Black-Scholes equation. Part II. Result. Math. 42 (2002), 212–228. | DOI | MR
[4] F. Altomare, I. Rasa: On a class of exponential-type operators and their limit semigroups. J. Approximation Theory 135 (2005), 258–275. | DOI | MR
[5] A. Attalienti, I. Rasa: Total positivity: An application to positive linear operators and to their limiting semigroups. Rev. Anal. Numer. Theor. Approx. 36 (2007), 51–66. | MR
[6] I. Carbone: Shape preserving properties of some positive linear operators on unbounded intervals. J. Approximation Theory 93 (1998), 140–156. | DOI | MR | Zbl
[7] N. El Karoui, M. Jeanblanc-Picqué, and S. E. Shreve: Robustness of the Black and Scholes formula. Math. Finance 8 (1998), 93–126. | DOI | MR
[8] I. Faragó, T. Pfeil: Preserving concavity in initial-boundary value problems of parabolic type and in its numerical solution. Period. Math. Hung. 30 (1995), 135–139. | DOI | MR
[9] R. Korn, E. Korn: Option Pricing and Portfolio Optimization. Modern Methods of Financial Mathematics. Amer. Math. Soc., Providence, 2001. | MR
[10] M. Kovács: On positivity, shape, and norm-bound preservation of time-stepping methods for semigroups. J. Math. Anal. Appl. 304 (2005), 115–136. | DOI | MR
[11] B.Øksendal: Stochastic Differential Equations. Fourth Edition. Springer-Verlag, New York, 1995.