The symmetric Choquet integral with respect to Riesz-space-valued capacities
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 289-310
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A definition of “Šipoš integral” is given, similarly to [3],[5],[10], for real-valued functions and with respect to Dedekind complete Riesz-space-valued “capacities”. A comparison of Choquet and Šipoš-type integrals is given, and some fundamental properties and some convergence theorems for the Šipoš integral are proved.
A definition of “Šipoš integral” is given, similarly to [3],[5],[10], for real-valued functions and with respect to Dedekind complete Riesz-space-valued “capacities”. A comparison of Choquet and Šipoš-type integrals is given, and some fundamental properties and some convergence theorems for the Šipoš integral are proved.
Classification :
28A25, 28A70, 28B05, 28C99, 46G12
Keywords: Riesz spaces; capacities; integration; symmetric Choquet integral; monotone and dominated convergence theorems
Keywords: Riesz spaces; capacities; integration; symmetric Choquet integral; monotone and dominated convergence theorems
@article{CMJ_2008_58_2_a0,
author = {Boccuto, Antonio and Rie\v{c}an, Beloslav},
title = {The symmetric {Choquet} integral with respect to {Riesz-space-valued} capacities},
journal = {Czechoslovak Mathematical Journal},
pages = {289--310},
year = {2008},
volume = {58},
number = {2},
mrnumber = {2411091},
zbl = {1174.28012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a0/}
}
TY - JOUR AU - Boccuto, Antonio AU - Riečan, Beloslav TI - The symmetric Choquet integral with respect to Riesz-space-valued capacities JO - Czechoslovak Mathematical Journal PY - 2008 SP - 289 EP - 310 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a0/ LA - en ID - CMJ_2008_58_2_a0 ER -
Boccuto, Antonio; Riečan, Beloslav. The symmetric Choquet integral with respect to Riesz-space-valued capacities. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 289-310. http://geodesic.mathdoc.fr/item/CMJ_2008_58_2_a0/