Keywords: prime ring; derivation; extended centroid; martindale quotient ring
@article{CMJ_2008_58_1_a9,
author = {Dhara, Basudeb and Sharma, R. K.},
title = {Derivations with power central values on {Lie} ideals in prime rings},
journal = {Czechoslovak Mathematical Journal},
pages = {147--153},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402531},
zbl = {1165.16303},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a9/}
}
Dhara, Basudeb; Sharma, R. K. Derivations with power central values on Lie ideals in prime rings. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 147-153. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a9/
[1] J. Bergen, I. N. Herstein and J. W. Keer: Lie ideals and derivations of prime rings. J. Algebra 71 (1981), 259–267. | DOI | MR
[2] L. Carini and V. D. Filippis: Commutators with power central values on a Lie ideal. Pacific J. Math. 193 (2000), 269–278. | DOI | MR
[3] C. L. Chuang: GPI’s having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc. 103 (1988), 723–728. | DOI | MR
[4] T. S. Erickson, W. S. Martindale III and J. M. Osborn: Prime nonassociative algebras. Pacific J. Math. 60 (1975), 49–63. | DOI | MR
[5] N. Jacobson: PI-algebras, an Introduction. Lecture notes in Math., 441, Springer Verlag, New York, 1975. | MR | Zbl
[6] N. Jacobson: Structure of Rings. Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964. | MR
[7] V. K. Kharchenko: Differential identity of prime rings. Algebra and Logic. 17 (1978), 155–168. | DOI | MR
[8] C. Lanski: An engel condition with derivation. Proc. Amer. Math. Soc. 118 (1993), 731–734. | DOI | MR | Zbl
[9] C. Lanski: Differential identities, Lie ideals, and Posner’s theorems. Pacific J. Math. 134 (1988), 275–297. | DOI | MR | Zbl
[10] W. S. Martindale III: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576–584. | DOI | MR
[11] E. C. Posner: Derivation in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100. | DOI | MR