Symmetry of iteration graphs
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 131-145
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We examine iteration graphs of the squaring function on the rings $\mathbb{Z}/n\mathbb{Z}$ when $n = 2^{k}p$, for $p$ a Fermat prime. We describe several invariants associated to these graphs and use them to prove that the graphs are not symmetric when $k=3$ and when $k\ge 5$ and are symmetric when $k = 4$.
We examine iteration graphs of the squaring function on the rings $\mathbb{Z}/n\mathbb{Z}$ when $n = 2^{k}p$, for $p$ a Fermat prime. We describe several invariants associated to these graphs and use them to prove that the graphs are not symmetric when $k=3$ and when $k\ge 5$ and are symmetric when $k = 4$.
Classification :
05C20, 05C62, 11T99
Keywords: digraph; iteration digraph; quadratic map; tree; cycle
Keywords: digraph; iteration digraph; quadratic map; tree; cycle
@article{CMJ_2008_58_1_a8,
author = {Carlip, Walter and Mincheva, Martina},
title = {Symmetry of iteration graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {131--145},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402530},
zbl = {1174.05048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a8/}
}
Carlip, Walter; Mincheva, Martina. Symmetry of iteration graphs. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 131-145. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a8/