Keywords: digraph; iteration digraph; quadratic map; tree; cycle
@article{CMJ_2008_58_1_a8,
author = {Carlip, Walter and Mincheva, Martina},
title = {Symmetry of iteration graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {131--145},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402530},
zbl = {1174.05048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a8/}
}
Carlip, Walter; Mincheva, Martina. Symmetry of iteration graphs. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 131-145. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a8/
[1] Earle L. Blanton, Jr., Spencer P. Hurd and Judson S. McCranie: On a digraph defined by squaring modulo $n$. Fibonacci Quart. 30 (1992), 322–334. | MR
[2] Guy Chassé: Combinatorial cycles of a polynomial map over a commutative field. Discrete Math. 61 (1986), 21–26. | DOI | MR
[3] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C. North and Gordon Woodhull: Graphviz-open source graph drawing tools. Graph drawing (Petra Mutzel, Michael Jünger, and Sebastian Leipert, eds.), Lecture Notes in Computer Science, vol. 2265, Springer-Verlag, Berlin, 2002, Selected papers from the 9th International Symposium (GD 2001) held in Vienna, September 23–26, 2001, pp. 483–484. (English) | MR
[4] The GAP Group, Gap-groups, algorithms, and programming, version 4.4, 2005, ( http://www.gap-system.org)</b>
[5] Thomas D. Rogers: The graph of the square mapping on the prime fields. Discrete Math. 148 (1996), 317–324. | DOI | MR
[6] Lawrence Somer and Michal Křížek: On a connection of number theory with graph theory. Czechoslovak Math. J. 54 (2004), 465–485. | DOI | MR
[7] L. Szalay: A discrete iteration in number theory. BDTF Tud. Közl. 8 (1992), 71–91. | Zbl
[8] Troy Vasiga and Jeffrey Shallit: On the iteration of certain quadratic maps over $\text{GF}(p)$. Discrete Math. 277 (2004), 219–240. | MR