Keywords: global differentiability of weak solutions; elliptic problems; controlled growth; nonlinearity with $q=2$
@article{CMJ_2008_58_1_a7,
author = {Fattorusso, Luisa},
title = {A global differentiability result for solutions of nonlinear elliptic problems with controlled growths},
journal = {Czechoslovak Mathematical Journal},
pages = {113--129},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402529},
zbl = {1174.35039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a7/}
}
TY - JOUR AU - Fattorusso, Luisa TI - A global differentiability result for solutions of nonlinear elliptic problems with controlled growths JO - Czechoslovak Mathematical Journal PY - 2008 SP - 113 EP - 129 VL - 58 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a7/ LA - en ID - CMJ_2008_58_1_a7 ER -
Fattorusso, Luisa. A global differentiability result for solutions of nonlinear elliptic problems with controlled growths. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 113-129. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a7/
[1] S. Campanato: Equazioni ellittiche del $II^{\circ }$ ordine e spazi $L^{2,\lambda }$. Ann. Mat. Pura App. 69 (1965), 321–382. (Italian) | DOI | MR
[2] S. Campanato: Sistemi ellittici in forma di divergenza. Quad. Scuola Normale Superiore Pisa (1980). (English) | MR
[3] S. Campanato: Differentiability of the solutions of nonlinear elliptic system with natural growts. Ann. Mat. Pura Appl., 4. Ser. 131 (1982), 75–106. | DOI | MR
[4] S. Campanato: A maximum principle for nonlinear elliptic system: Boundary fundamental estimates. Adv. Math. 66 (1987), 291–317. | DOI | MR
[5] S. Campanato, P. Cannarsa: Differentiability and partial Hölder continuity of the solutions of non linear elliptic systems of order $2m$ with quadratic growth. Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser. 8 (1981), 285–309. | MR