Positive Toeplitz operators between the pluriharmonic Bergman spaces
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 93-111 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study Toeplitz operators between the pluriharmonic Bergman spaces for positive symbols on the ball. We give characterizations of bounded and compact Toeplitz operators taking a pluriharmonic Bergman space $b^p$ into another $b^q$ for $1 p, q \infty $ in terms of certain Carleson and vanishing Carleson measures.
We study Toeplitz operators between the pluriharmonic Bergman spaces for positive symbols on the ball. We give characterizations of bounded and compact Toeplitz operators taking a pluriharmonic Bergman space $b^p$ into another $b^q$ for $1 p, q \infty $ in terms of certain Carleson and vanishing Carleson measures.
Classification : 31B05, 31C10, 46E15, 47B35
Keywords: Toeplitz operators; pluriharmonic Bergman spaces; Carleson measure
@article{CMJ_2008_58_1_a6,
     author = {Choi, Eun Sun},
     title = {Positive {Toeplitz} operators between the pluriharmonic {Bergman} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {93--111},
     year = {2008},
     volume = {58},
     number = {1},
     mrnumber = {2402528},
     zbl = {1174.47021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a6/}
}
TY  - JOUR
AU  - Choi, Eun Sun
TI  - Positive Toeplitz operators between the pluriharmonic Bergman spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 93
EP  - 111
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a6/
LA  - en
ID  - CMJ_2008_58_1_a6
ER  - 
%0 Journal Article
%A Choi, Eun Sun
%T Positive Toeplitz operators between the pluriharmonic Bergman spaces
%J Czechoslovak Mathematical Journal
%D 2008
%P 93-111
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a6/
%G en
%F CMJ_2008_58_1_a6
Choi, Eun Sun. Positive Toeplitz operators between the pluriharmonic Bergman spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 93-111. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a6/

[1] B. R.  Choe, H.  Koo, and H.  Yi: Positive Toeplitz operators between the harmonic Bergman spaces. Potential Anal. 17 (2002), 307–335. | DOI | MR

[2] B. R.  Choe, Y. J.  Lee, and K.  Na: Positive Toeplitz operators from a harmonic Bergman space into another. Tohoku Math.  J. 56 (2004), 255–270. | DOI | MR

[3] E. S.  Choi: Positive Toeplitz operators on pluriharmonic Bergman spaces. J. Math. Kyoto Univ. 47 (2007), 247–267. | DOI | MR | Zbl

[4] D.  Luecking: Embedding theorem for spaces of analytic functions via Khinchine’s inequality. Mich. Math.  J. 40 (1993), 333–358. | DOI | MR

[5] J.  Miao: Toeplitz operators on harmonic Bergman spaces. Integral Equations Oper. Theory 27 (1997), 426–438. | DOI | MR | Zbl

[6] K.  Zhu: Operator Theory in Function Spaces. Marcell Dekker, New York, 1990. | MR | Zbl

[7] K.  Zhu: Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains. J.  Oper. Theory 20 (1988), 329–357. | MR | Zbl

[8] W.  Rudin: Function Theory in the Unit Ball of $\mathbb{C}^n$. Springer-Verlag, New York, 1980. | MR