Keywords: Toeplitz operators; pluriharmonic Bergman spaces; Carleson measure
@article{CMJ_2008_58_1_a6,
author = {Choi, Eun Sun},
title = {Positive {Toeplitz} operators between the pluriharmonic {Bergman} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {93--111},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402528},
zbl = {1174.47021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a6/}
}
Choi, Eun Sun. Positive Toeplitz operators between the pluriharmonic Bergman spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 93-111. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a6/
[1] B. R. Choe, H. Koo, and H. Yi: Positive Toeplitz operators between the harmonic Bergman spaces. Potential Anal. 17 (2002), 307–335. | DOI | MR
[2] B. R. Choe, Y. J. Lee, and K. Na: Positive Toeplitz operators from a harmonic Bergman space into another. Tohoku Math. J. 56 (2004), 255–270. | DOI | MR
[3] E. S. Choi: Positive Toeplitz operators on pluriharmonic Bergman spaces. J. Math. Kyoto Univ. 47 (2007), 247–267. | DOI | MR | Zbl
[4] D. Luecking: Embedding theorem for spaces of analytic functions via Khinchine’s inequality. Mich. Math. J. 40 (1993), 333–358. | DOI | MR
[5] J. Miao: Toeplitz operators on harmonic Bergman spaces. Integral Equations Oper. Theory 27 (1997), 426–438. | DOI | MR | Zbl
[6] K. Zhu: Operator Theory in Function Spaces. Marcell Dekker, New York, 1990. | MR | Zbl
[7] K. Zhu: Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains. J. Oper. Theory 20 (1988), 329–357. | MR | Zbl
[8] W. Rudin: Function Theory in the Unit Ball of $\mathbb{C}^n$. Springer-Verlag, New York, 1980. | MR