Minimal submanifolds in $\mathbb{R}^4$ with a g.c.K. structure
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 61-78 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we obtain all invariant, anti-invariant and $CR$ submanifolds in $({\mathbb{R}}^4,g,J)$ endowed with a globally conformal Kähler structure which are minimal and tangent or normal to the Lee vector field of the g.c.K. structure.
In this paper we obtain all invariant, anti-invariant and $CR$ submanifolds in $({\mathbb{R}}^4,g,J)$ endowed with a globally conformal Kähler structure which are minimal and tangent or normal to the Lee vector field of the g.c.K. structure.
Classification : 53B25, 53B35, 53C21, 53C42, 53C55
Keywords: locally conformal Kähler structure; minimal submanifolds; invariant submanifolds; totally real submanifolds; $CR$-submanifolds
@article{CMJ_2008_58_1_a4,
     author = {Munteanu, Marian-Ioan},
     title = {Minimal submanifolds in $\mathbb{R}^4$ with a {g.c.K.} structure},
     journal = {Czechoslovak Mathematical Journal},
     pages = {61--78},
     year = {2008},
     volume = {58},
     number = {1},
     mrnumber = {2402526},
     zbl = {1174.53011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a4/}
}
TY  - JOUR
AU  - Munteanu, Marian-Ioan
TI  - Minimal submanifolds in $\mathbb{R}^4$ with a g.c.K. structure
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 61
EP  - 78
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a4/
LA  - en
ID  - CMJ_2008_58_1_a4
ER  - 
%0 Journal Article
%A Munteanu, Marian-Ioan
%T Minimal submanifolds in $\mathbb{R}^4$ with a g.c.K. structure
%J Czechoslovak Mathematical Journal
%D 2008
%P 61-78
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a4/
%G en
%F CMJ_2008_58_1_a4
Munteanu, Marian-Ioan. Minimal submanifolds in $\mathbb{R}^4$ with a g.c.K. structure. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 61-78. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a4/

[1] D. E.  Blair, S.  Dragomir: $CR$-products in Locally Conformal Kähler Manifolds. Kyushu J.  Math. 56 (2002), 337–362. | DOI | MR

[2] S.  Dragomir, L.  Ornea: Locally Conformal Kähler Geometry. Birkhäuser-Verlag, Boston-Basel-Berlin, 1998. | MR

[3] S.  Dragomir: Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds. Geom. Dedicata 28 (1988), 181–197. | DOI | MR | Zbl

[4] H.  Inage, K.  Matsumoto: $4$-dimensional Kählerian manifolds. Preprint  2004.

[5] P.  Libermann: Sur le problème d’équivalence de certaines structures infinitésimales régulières. Ann. Mat. Pura Appl. 36 (1954), 27–120. (French) | DOI | MR

[6] I.  Vaisman: On locally conformal almost Kähler manifolds. Isr. J.  Math. 24 (1976), 338–351. | DOI | MR | Zbl

[7] K.  Yano, M.  Kon: $CR$  Submanifolds of Kaehlerian and Sasakian Manifolds. Birkhäuser-Verlag, Boston-Basel-Stuttgart, 1983. | MR