On the Euler function of repdigits
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 51-59 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a positive integer $n$ we write $\phi (n)$ for the Euler function of $n$. In this note, we show that if $b>1$ is a fixed positive integer, then the equation \[ \phi \Big (x\frac{b^n-1}{b-1}\Big )=y\frac{b^m-1}{b-1},\qquad {\text{where}} \ x,~y\in \lbrace 1,\ldots ,b-1\rbrace , \] has only finitely many positive integer solutions $(x,y,m,n)$.
For a positive integer $n$ we write $\phi (n)$ for the Euler function of $n$. In this note, we show that if $b>1$ is a fixed positive integer, then the equation \[ \phi \Big (x\frac{b^n-1}{b-1}\Big )=y\frac{b^m-1}{b-1},\qquad {\text{where}} \ x,~y\in \lbrace 1,\ldots ,b-1\rbrace , \] has only finitely many positive integer solutions $(x,y,m,n)$.
Classification : 11A25
Keywords: Euler function; prime; divisor
@article{CMJ_2008_58_1_a3,
     author = {Luca, Florian},
     title = {On the {Euler} function of repdigits},
     journal = {Czechoslovak Mathematical Journal},
     pages = {51--59},
     year = {2008},
     volume = {58},
     number = {1},
     mrnumber = {2402525},
     zbl = {1174.11004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a3/}
}
TY  - JOUR
AU  - Luca, Florian
TI  - On the Euler function of repdigits
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 51
EP  - 59
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a3/
LA  - en
ID  - CMJ_2008_58_1_a3
ER  - 
%0 Journal Article
%A Luca, Florian
%T On the Euler function of repdigits
%J Czechoslovak Mathematical Journal
%D 2008
%P 51-59
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a3/
%G en
%F CMJ_2008_58_1_a3
Luca, Florian. On the Euler function of repdigits. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 51-59. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a3/

[1] Yu. Bilu, G. Hanrot and P. M. Voutier: Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte). J. Reine Angew. Math. 539 (2001), 75–122. | MR

[2] R. D. Carmichael: On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$. Ann. Math. 15 (1913), 30–70. | MR

[3] F. Luca: On the equation $\phi (|x^m+y^m|)=|x^n+y^n|$. Indian J. Pure Appl. Math. 30 (1999), 183–197. | MR

[4] F. Luca: On the equation $\phi (x^m-y^m)=x^n+y^n$. Irish Math. Soc. Bull. 40 (1998), 46–55. | MR

[5] F. Luca: Euler indicators of binary recurrent sequences. Collect. Math. 53 (2002), 133–156. | MR

[6] F. Luca: Problem $10626$. Amer. Math. Monthly 104 (1997), 871. | DOI

[7] K. K. Norton: On the number of restricted prime factors of an integer I. Illinois J. Math. 20 (1976), 681–705 Zbl 0329.10035. | DOI | MR | Zbl

[8] C. Pomerance: On the distribution of amicable numbers. J. Reine Angew. Math. 293/294 (1977), 217–222. | MR | Zbl