Keywords: curve with finite turn; tangent of a curve; curve with finite convexity; delta-convex curve; d.c. curve
@article{CMJ_2008_58_1_a2,
author = {Duda, Jakub},
title = {Curves with finite turn},
journal = {Czechoslovak Mathematical Journal},
pages = {23--49},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402524},
zbl = {1167.46321},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a2/}
}
Duda, Jakub. Curves with finite turn. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 23-49. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a2/
[1] A. D. Alexandrov, Yu. Reshetnyak: General Theory of Irregular Curves. Mathematics and its Applications (Soviet Series), Vol. 29, Kluwer Academic Publishers, Dordrecht, 1989. | MR
[2] Y. Benyamini, J. Lindenstrauss: Geometric Nonlinear Functional Analysis, Vol. 1. Colloquium Publications 48. American Mathematical Society, Providence, 2000. | MR
[3] J. Duda, L. Veselý, L. Zajíček: On D.C. functions and mappings. Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 111–138. | MR
[4] M. Gronychová: Konvexita a ohyb křivky. Master Thesis, Charles University, Prague, 1987. (Czech)
[5] N. Kalton: private communication.
[6] A. V. Pogorelov: Extrinsic geometry of convex surfaces. Translations of Mathematical Monographs, Vol. 35, American Mathematical Society, Providence, 1973. | MR | Zbl
[7] A. W. Roberts, D. E. Varberg: Convex functions. Pure and Applied Mathematics, Vol. 57, Academic Press, New York-London, 1973. | MR
[8] J. J. Schäffer: Geometry of Spheres in Normed Spaces. Lecture Notes in Pure and Applied Mathematics Vol. 20, Marcel Dekker, New York-Basel, 1976. | MR
[9] L. Veselý: On the multiplicity points of monotone operators on separable Banach spaces. Comment. Math. Univ. Carolinae 27 (1986), 551–570. | MR
[10] L. Veselý, L. Zajíček: Delta-convex mappings between Banach spaces and applications. Diss. Math. Vol. 289, 1989. | MR