Keywords: traceable number; upper traceable number; Hamiltonian number
@article{CMJ_2008_58_1_a15,
author = {Okamoto, Futaba and Zhang, Ping and Saenpholphat, Varaporn},
title = {The upper traceable number of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {271--287},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402537},
zbl = {1174.05040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a15/}
}
Okamoto, Futaba; Zhang, Ping; Saenpholphat, Varaporn. The upper traceable number of a graph. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 271-287. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a15/
[1] T. Asano, T. Nishizeki and T. Watanabe: An upper bound on the length of a Hamiltonian walk of a maximal planar graph. J. Graph Theory 4 (1980), 315–336. | DOI | MR
[2] T. Asano, T. Nishizeki and T. Watanabe: An approximation algorithm for the Hamiltonian walk problems on maximal planar graphs. Discrete Appl. Math. 5 (1983), 211–222. | DOI | MR
[3] J. C. Bermond: On Hamiltonian walks. Congr. Numer. 15 (1976), 41–51. | MR | Zbl
[4] G. Chartrand, T. Thomas, V. Saenpholphat and P. Zhang: On the Hamiltonian number of a graph. Congr. Numer. 165 (2003), 51–64. | MR
[5] G. Chartrand, T. Thomas, V. Saenpholphat and P. Zhang: A new look at Hamiltonian walks. Bull. Inst. Combin. Appl. 42 (2004), 37–52. | MR
[6] G. Chartrand and P. Zhang: Introduction to Graph Theory. McGraw-Hill, Boston, 2005.
[7] S. E. Goodman and S. T. Hedetniemi: On Hamiltonian walks in graphs. Congr. Numer. (1973), 335–342. | MR
[8] S. E. Goodman and S. T. Hedetniemi: On Hamiltonian walks in graphs. SIAM J. Comput. 3 (1974), 214–221. | DOI | MR
[9] L. Nebeský: A generalization of Hamiltonian cycles for trees. Czech. Math. J. 26 (1976), 596–603. | MR
[10] F. Okamoto, V. Saenpholphat and P. Zhang: Measures of traceability in graphs. Math. Bohem. 131 (2006), 63–83. | MR
[11] V. Saenpholphat and P. Zhang: Graphs with prescribed order and Hamiltonian number. Congr. Numer. 175 (2005), 161–173. | MR
[12] P. Vacek: On open Hamiltonian walks in graphs. Arch Math. (Brno) 27A (1991), 105–111. | MR | Zbl