Keywords: Riemannian manifold; naturally reductive Riemannian homogeneous space; D’Atri space
@article{CMJ_2008_58_1_a13,
author = {Arias-Marco, Teresa and Kowalski, Old\v{r}ich},
title = {Classification of 4-dimensional homogeneous {D'Atri} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {203--239},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402535},
zbl = {1174.53024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a13/}
}
Arias-Marco, Teresa; Kowalski, Oldřich. Classification of 4-dimensional homogeneous D'Atri spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 203-239. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a13/
[1] T. Arias-Marco: The classification of 4-dimensional homogeneous D’Atri spaces revisited. Differential Geometry and its Applications (to appear). | MR | Zbl
[2] L. Bérard Bergery: Les espaces homogènes riemanniens de dimension 4. Géométrie riemannienne en dimension 4, L. Bérard Bergery, M. Berger, C. Houzel (eds.), CEDIC, Paris, 1981. (French) | MR
[3] E. Boeckx, L. Vanhecke, O. Kowalski: Riemannian Manifolds of Conullity Two. World Scientific, Singapore, 1996. | MR
[4] P. Bueken, L. Vanhecke: Three- and four-dimensional Einstein-like manifolds and homogeneity. Geom. Dedicata 75 (1999), 123–136. | DOI | MR
[5] J. E. D’Atri, H. K. Nickerson: Divergence preserving geodesic symmetries. J. Differ. Geom. 3 (1969), 467–476. | MR
[6] J. E. D’Atri, H. K. Nickerson: Geodesic symmetries in spaces with special curvature tensors. J. Differ. Geom. 9 (1974), 251–262. | MR
[7] G. R. Jensen: Homogeneous Einstein spaces of dimension four. J. Differ. Geom. 3 (1969), 309–349. | MR | Zbl
[8] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry I. Interscience, New York, 1963. | MR
[9] O. Kowalski: Spaces with volume-preserving symmetries and related classes of Riemannian manifolds. Rend. Semin. Mat. Univ. Politec. Torino, Fascicolo Speciale (1983), 131–158. | MR | Zbl
[10] O. Kowalski, F. Prüfer, L. Vanhecke: D’Atri Spaces. Topics in Geometry. Prog. Nonlinear Differ. Equ. Appl. 20 (1996), 241–284. | MR
[11] J. Milnor: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293–329. | DOI | MR | Zbl
[12] H. Pedersen, P. Tod: The Ledger curvature conditions and D’Atri geometry. Differ. Geom. Appl. 11 (1999), 155–162. | DOI | MR
[13] F. Podestà, A. Spiro: Four-dimensional Einstein-like manifolds and curvature homogeneity. Geom. Dedicata 54 (1995), 225–243. | DOI | MR
[14] I. M. Singer: Infinitesimally homogeneous spaces. Commun. Pure Appl. Math. 13 (1960), 685–697. | DOI | MR | Zbl
[15] Z. I. Szabó: Spectral theory for operator families on Riemannian manifolds. Proc. Symp. Pure Maths. 54 (1993), 615–665.
[16] K. P. Tod: Four-dimensional D’Atri-Einstein spaces are locally symmetric. Differ. Geom. Appl. 11 (1999), 55–67. | DOI | MR | Zbl