Keywords: residuated lattice; lattice ordered group; generalized $MV$-algebra; direct summand
@article{CMJ_2008_58_1_a12,
author = {Jakub{\'\i}k, J\'an},
title = {Direct summands and retract mappings of generalized $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {183--202},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402534},
zbl = {1174.06319},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a12/}
}
Jakubík, Ján. Direct summands and retract mappings of generalized $MV$-algebras. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 183-202. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a12/
[1] C. C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. | DOI | MR | Zbl
[2] R. Cignoli, I. M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. | MR
[3] A. Dvurečenskij: Pseudo MV-algebras are intervals in $\ell $-groups. J. Austral. Math. Soc. 72 (2004), 427–445. | MR
[4] L. Fuchs:: Infinite Abelian Groups, Vol. 1. Academic Press, New York and London, 1970. | MR
[5] N. Galatos and C. Tsinakis: Generalized MV-algebras. J. Algebra 283 (2005), 254–291. | DOI | MR
[6] G. Georgescu and A. Iorgulescu: Pseudo MV-algebras: a noncommutative extension of MV-algebras. In: Information Technology, Bucharest 1999, INFOREC, Bucharest, 1999, pp. 961–968. | MR
[7] G. Georgescu and A. Iorgulescu: Pseudo MV-algebras. Multi-Valued Logic 6 (2001), 95–135. | MR
[8] A. M. W. Glass: Partially Ordered Groups. World Scientific, Singapore-New Jersey-London-Hong Kong, 1999. | MR | Zbl
[9] J. Jakubík: Direct product decompositions of MV-algebras. Czech. Math. J. 44 (1994), 725–739.
[10] J. Jakubík: Direct product decompositions of pseudo MV-algebras. Archivum Math. 37 (2001), 131–142. | MR
[11] J. Jakubík: Weak $(m, n)$-distributivity of lattice ordered groups and of generalized MV-algebras. Soft Computing 10 (2006), 119–124. | MR
[12] J. Jakubík: On interval subalgebras of generalized MV-algebras. Math. Slovaca 56 (2006), 387–395. | MR
[13] J. Jakubík: Retracts of abelian lattice ordered groups. Czech. Math. J. 39 (1989), 477–489. | MR
[14] J. Jakubík: Retract varieties of lattice ordered groups. Czech. Math. J. 40 (1990), 104–112. | MR
[15] J. Jakubík: Complete retract mappings of a complete lattice ordered group. Czech. Math. J. 43 (1993), 309–318. | MR
[16] J. Jakubík: On absolute retracts and absolute convex retracts in some classes of $\ell $-groups. Discussiones Math., Gener. Alg. Appl. 23 (2003), 19–30. | MR
[17] J. Jakubík: Retract mappings of projectable MV-algebras. Soft Computing 4 (2000), 27–32.
[18] D. Mundici: Interpretation of AFC$^*$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. | DOI | MR
[19] J. Rachůnek: A non-commutative generalization of MV-algebras. Czech. Math. J. 52 (2002), 255–273. | DOI | MR
[20] J. Rachůnek and D. Šalounová: Direct product factors in $GMV$-algebras. Math. Slovaca 55 (2005), 399–407. | MR