The exactness of the projective limit functor on the category of quotients of Frechet spaces
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 173-181 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give conditions under which the functor projective limit is exact on the category of quotients of Fréchet spaces of L. Waelbroeck [18].
We give conditions under which the functor projective limit is exact on the category of quotients of Fréchet spaces of L. Waelbroeck [18].
Classification : 46A04, 46A17, 46M05, 46M15, 46M40
Keywords: quotient d’espaces de Fréchet; limite projective
@article{CMJ_2008_58_1_a11,
     author = {Aqzzouz, Belmesnaoui},
     title = {The exactness of the projective limit functor on the category of quotients of {Frechet} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {173--181},
     year = {2008},
     volume = {58},
     number = {1},
     mrnumber = {2402533},
     zbl = {1174.46036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a11/}
}
TY  - JOUR
AU  - Aqzzouz, Belmesnaoui
TI  - The exactness of the projective limit functor on the category of quotients of Frechet spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 173
EP  - 181
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a11/
LA  - en
ID  - CMJ_2008_58_1_a11
ER  - 
%0 Journal Article
%A Aqzzouz, Belmesnaoui
%T The exactness of the projective limit functor on the category of quotients of Frechet spaces
%J Czechoslovak Mathematical Journal
%D 2008
%P 173-181
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a11/
%G en
%F CMJ_2008_58_1_a11
Aqzzouz, Belmesnaoui. The exactness of the projective limit functor on the category of quotients of Frechet spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 173-181. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a11/

[1] B. Aqzzouz and R. Nouira: La catégorie abélienne des quotients de type $\mathcal{LF}$. Czech. Math. J. 57 (2007), 183–190. | MR

[2] B. Aqzzouz: Une application du Lemme de Mittag-Leffler dans la catégorie des quotients d’espaces de Fréchet. (to appear).

[3] P. Domanski and D. Vogt: A splitting theorem for the space of smooth functions. J. Funct. Anal. 153 (1998), 203–248. | DOI | MR

[4] P. Domanski and D. Vogt: Distributional complexes split for positive dimensions. J. Reine Angew. Math. 522 (2000), 63–79. | MR

[5] L. Ehrenpreis: Fourier analysis in several complex variables. Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience Publishers A Division of John Wiley & Sons, New York-London-Sydney, 1970. | MR | Zbl

[6] A. Grothendieck: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. (1966). | MR

[7] L. Hörmander: The analysis of partial differential operators II. Grundlehren der Mathematischen Wissenschaften Springer-Verlag, Berlin, 1983.

[8] V. P. Palamodov: The projective limit functor in the category of topological linear spaces. Mat. Sb. (N.S.) 75 117 (1968), 567–603. (Russian) | MR

[9] V. P. Palamodov: Linear differential operators with constant coefficients. Translated from the Russian by A. A. Brown. Die Grundlehren der mathematischen Wissenschaften, Band 168 Springer-Verlag, New York-Berlin, 1970. | MR | Zbl

[10] V. P. Palamodov: Homological methods in the theory of locally convex spaces. Uspehi Mat. Nauk 26 1 (1971), 3–65. (Russian) | MR | Zbl

[11] V. P. Palamodov: On a Stein manifold the Dolbeault complex splits in positive dimensions. Mat. Sb. (N.S.) 88 (1972), 287–315. (Russian) | MR

[12] V. P. Palamodov: A criterion for splitness of differential complexes with constant coefficients. Geometric and Algebraic aspects in Several Complex Variables, AMS, 1991, pp. 265-291. | MR | Zbl

[13] F. H. Vasilescu: Spectral theory in quotient Fréchet spaces I. Revue Roumaine de Math. Pures et Appl. 32 (1987), 561–579. | MR | Zbl

[14] F. H. Vasilescu: Spectral theory in quotient Fréchet spaces II. J. Operator theory 21 (1989), 145–202. | MR | Zbl

[15] D. Vogt: On the functors $\mathop {\text{Ext}}_{1}(E,F)$ for Fréchet spaces. Studia Math. 85 (1987), 163–197. | DOI | MR

[16] L. Waelbroeck: Quotient Banach spaces. Banach Center Publ. Warsaw (1982), 553–562 and 563–571. | MR | Zbl

[17] L. Waelbroeck: The category of quotient bornological spaces. J.A. Barroso (ed.), Aspects of Mathematics and its Applications, Elsevier Sciences Publishers B.V. (1986), 873–894. | MR | Zbl

[18] L. Waelbroeck: Quotient Fréchet spaces. Revue Roumaine de Math. Pures et Appl. 34, n. 2 (1989), 171–179. | MR | Zbl

[19] L. Waelbroeck: Holomorphic Functions taking their values in a quotient bornological space. Linear operators in function spaces, 12th Int. Conf. Oper. Theory, Timisoara (Rom.) 1988, Oper. Theory, Adv. Appl. 43 (1990), 323–335. | MR | Zbl

[20] J. Wengenroth: Derived Functors in Functional Analysis. Lecture Notes in Math. 1810. Springer-Verlag, Berlin, 2003. | MR | Zbl