Keywords: quotient d’espaces de Fréchet; limite projective
@article{CMJ_2008_58_1_a11,
author = {Aqzzouz, Belmesnaoui},
title = {The exactness of the projective limit functor on the category of quotients of {Frechet} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {173--181},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402533},
zbl = {1174.46036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a11/}
}
TY - JOUR AU - Aqzzouz, Belmesnaoui TI - The exactness of the projective limit functor on the category of quotients of Frechet spaces JO - Czechoslovak Mathematical Journal PY - 2008 SP - 173 EP - 181 VL - 58 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a11/ LA - en ID - CMJ_2008_58_1_a11 ER -
Aqzzouz, Belmesnaoui. The exactness of the projective limit functor on the category of quotients of Frechet spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 173-181. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a11/
[1] B. Aqzzouz and R. Nouira: La catégorie abélienne des quotients de type $\mathcal{LF}$. Czech. Math. J. 57 (2007), 183–190. | MR
[2] B. Aqzzouz: Une application du Lemme de Mittag-Leffler dans la catégorie des quotients d’espaces de Fréchet. (to appear).
[3] P. Domanski and D. Vogt: A splitting theorem for the space of smooth functions. J. Funct. Anal. 153 (1998), 203–248. | DOI | MR
[4] P. Domanski and D. Vogt: Distributional complexes split for positive dimensions. J. Reine Angew. Math. 522 (2000), 63–79. | MR
[5] L. Ehrenpreis: Fourier analysis in several complex variables. Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience Publishers A Division of John Wiley & Sons, New York-London-Sydney, 1970. | MR | Zbl
[6] A. Grothendieck: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. (1966). | MR
[7] L. Hörmander: The analysis of partial differential operators II. Grundlehren der Mathematischen Wissenschaften Springer-Verlag, Berlin, 1983.
[8] V. P. Palamodov: The projective limit functor in the category of topological linear spaces. Mat. Sb. (N.S.) 75 117 (1968), 567–603. (Russian) | MR
[9] V. P. Palamodov: Linear differential operators with constant coefficients. Translated from the Russian by A. A. Brown. Die Grundlehren der mathematischen Wissenschaften, Band 168 Springer-Verlag, New York-Berlin, 1970. | MR | Zbl
[10] V. P. Palamodov: Homological methods in the theory of locally convex spaces. Uspehi Mat. Nauk 26 1 (1971), 3–65. (Russian) | MR | Zbl
[11] V. P. Palamodov: On a Stein manifold the Dolbeault complex splits in positive dimensions. Mat. Sb. (N.S.) 88 (1972), 287–315. (Russian) | MR
[12] V. P. Palamodov: A criterion for splitness of differential complexes with constant coefficients. Geometric and Algebraic aspects in Several Complex Variables, AMS, 1991, pp. 265-291. | MR | Zbl
[13] F. H. Vasilescu: Spectral theory in quotient Fréchet spaces I. Revue Roumaine de Math. Pures et Appl. 32 (1987), 561–579. | MR | Zbl
[14] F. H. Vasilescu: Spectral theory in quotient Fréchet spaces II. J. Operator theory 21 (1989), 145–202. | MR | Zbl
[15] D. Vogt: On the functors $\mathop {\text{Ext}}_{1}(E,F)$ for Fréchet spaces. Studia Math. 85 (1987), 163–197. | DOI | MR
[16] L. Waelbroeck: Quotient Banach spaces. Banach Center Publ. Warsaw (1982), 553–562 and 563–571. | MR | Zbl
[17] L. Waelbroeck: The category of quotient bornological spaces. J.A. Barroso (ed.), Aspects of Mathematics and its Applications, Elsevier Sciences Publishers B.V. (1986), 873–894. | MR | Zbl
[18] L. Waelbroeck: Quotient Fréchet spaces. Revue Roumaine de Math. Pures et Appl. 34, n. 2 (1989), 171–179. | MR | Zbl
[19] L. Waelbroeck: Holomorphic Functions taking their values in a quotient bornological space. Linear operators in function spaces, 12th Int. Conf. Oper. Theory, Timisoara (Rom.) 1988, Oper. Theory, Adv. Appl. 43 (1990), 323–335. | MR | Zbl
[20] J. Wengenroth: Derived Functors in Functional Analysis. Lecture Notes in Math. 1810. Springer-Verlag, Berlin, 2003. | MR | Zbl