Keywords: $p(x)$-Laplace operator; generalized Lebesgue-Sobolev space; critical point; weak solution; electrorheological fluid
@article{CMJ_2008_58_1_a10,
author = {Mih\u{a}ilescu, Mihai},
title = {On a class of nonlinear problems involving a $p(x)${-Laplace} type operator},
journal = {Czechoslovak Mathematical Journal},
pages = {155--172},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402532},
zbl = {1165.35336},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a10/}
}
Mihăilescu, Mihai. On a class of nonlinear problems involving a $p(x)$-Laplace type operator. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 155-172. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a10/
[1] E. Acerbi and G. Mingione: Regularity results for a class of functionals with nonstandard growth. Arch. Rational Mech. Anal. 156 (2001), 121–140. | DOI | MR
[2] C. O. Alves and M. A. S. Souto: Existence of solutions for a class of problems involving the $p(x)$-Laplacian. Progress in Nonlinear Differential Equations and Their Applications 66 (2005), 17–32. | MR
[3] A. Ambrosetti and P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Functional Analysis 14 (1973), 349–381. | MR
[4] H. Brezis: Analyse fonctionnelle: théorie et applications. Masson, Paris, 1992. | MR
[5] L. Diening: Theorical and numerical results for electrorheological fluids. Ph.D. thesis, University of Freiburg, Germany, 2002.
[6] D. E. Edmunds, J. Lang and A. Nekvinda: On $L^{p(x)}$ norms. Proc. Roy. Soc. London Ser. A 455 (1999), 219–225. | MR
[7] D. E. Edmunds and J. Rákosník: Density of smooth functions in $W^{k,p(x)}(\Omega )$. Proc. Roy. Soc. London Ser. A 437 (1992), 229–236. | MR
[8] D. E. Edmunds and J. Rákosník: Sobolev embedding with variable exponent. Studia Math. 143 (2000), 267–293. | DOI | MR
[9] X. Fan, J. Shen and D. Zhao: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega )$. J. Math. Anal. Appl. 262 (2001), 749–760. | DOI | MR
[10] X. L. Fan and Q. H. Zhang: Existence of solutions for $p(x)$-Laplacian Dirichlet problem. Nonlinear Anal. 52 (2003), 1843–1852. | DOI | MR
[11] X. L. Fan, Q. H. Zhang and D. Zhao: Eigenvalues of $p(x)$-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302 (2005), 306–317. | DOI | MR
[12] X. L. Fan and D. Zhao: On the spaces $L^{p(x)}(\Omega )$ and $W^{m,p(x)}(\Omega )$. J. Math. Anal. Appl. 263 (2001), 424–446. | MR
[13] T. C. Halsey: Electrorheological fluids. Science 258 (1992), 761–766. | DOI
[14] O. Kováčik and J. Rákosník: On spaces $L^{p(x)}$ and $W^{1,p(x)}$. Czech. Math. J. 41 (1991), 592–618. | MR
[15] H. G. Leopold: Embedding on function spaces of variable order of differentiation in function spaces of variable order of integration. Czech. Math. J. 49 (1999), 633–644. | DOI | MR
[16] P. Marcellini: Regularity and existence of solutions of elliptic equations with $p,q$ growth conditions. J. Differential Equations 90 (1991), 1–30. | DOI | MR | Zbl
[17] M. Mihăilescu: Elliptic problems in variable exponent spaces. Bull. Austral. Math. Soc. 74 (2006), 197–206. | MR
[18] M. Mihăilescu and V. Rădulescu: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. Roy. Soc. London Ser. A 462 (2006), 2625–2641. | MR
[19] M. Mihăilescu and V. Rădulescu: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proceedings of the American Mathematical Society 135 (2007), no. 9, 2929–2937. | DOI | MR
[20] J. Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, Vol. 1034, Springer, Berlin, 1983. | MR | Zbl
[21] J. Musielak and W. Orlicz: On modular spaces. Studia Math. 18 (1959), 49–65. | DOI | MR
[22] H. Nakano: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd., Tokyo, 1950. | MR | Zbl
[23] W. Orlicz: Über konjugierte Exponentenfolgen. Studia Math. 3 (1931), 200–211. | DOI | Zbl
[24] C. Pfeiffer, C. Mavroidis, Y. Bar-Cohen and B. Dolgin: Electrorheological fluid based force feedback device, in Proceedings of the 1999 SPIE Telemanipulator and Telepresence Technologies VI Conference (Boston, MA), Vol. 3840. 1999, pp. 88–99.
[25] P. Rabinowitz: Minimax methods in critical point theory with applications to differential equations, Expository Lectures from the CBMS Regional Conference held at the University of Miami, American Mathematical Society, Providence, RI. 1984. | MR
[26] M. Ruzicka: Electrorheological Fluids Modeling and Mathematical Theory. Springer-Verlag, Berlin, 2002. | MR
[27] I. Sharapudinov: On the topology of the space $L^{p(t)}([0;1])$. Matem. Zametki 26 (1978), 613–632. | MR
[28] M. Struwe: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Heidelberg, 1996. | MR | Zbl
[29] I. Tsenov: Generalization of the problem of best approximation of a function in the space $L^s$. Uch. Zap. Dagestan Gos. Univ. 7 (1961), 25–37.
[30] W. M. Winslow: Induced fibration of suspensions. J. Appl. Phys. 20 (1949), 1137–1140. | DOI
[31] Q. Zhang: A strong maximum principle for differential equations with nonstandard $p(x)$-growth conditions. J. Math. Anal. Appl. 312 (2005), 24–32. | DOI | MR | Zbl
[32] V. Zhikov: Averaging of functionals in the calculus of variations and elasticity. Math. USSR Izv. 29 (1987), 33–66. | DOI
[33] V. Zhikov: On passing to the limit in nonlinear variational problem. Math. Sb. 183 (1992), 47–84. | MR