On a class of nonlinear problems involving a $p(x)$-Laplace type operator
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 155-172 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the boundary value problem $-{\mathrm div}((|\nabla u|^{p_1(x) -2}+|\nabla u|^{p_2(x)-2})\nabla u)=f(x,u)$ in $\Omega $, $u=0$ on $\partial \Omega $, where $\Omega $ is a smooth bounded domain in ${\mathbb{R}} ^N$. Our attention is focused on two cases when $f(x,u)=\pm (-\lambda |u|^{m(x)-2}u+|u|^{q(x)-2}u)$, where $m(x)=\max \lbrace p_1(x),p_2(x)\rbrace $ for any $x\in \overline{\Omega }$ or $m(x)0$. In the latter we prove that if $\lambda $ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a ${\mathbb{Z}} _2$-symmetric version for even functionals of the Mountain Pass Theorem and some adequate variational methods.
We study the boundary value problem $-{\mathrm div}((|\nabla u|^{p_1(x) -2}+|\nabla u|^{p_2(x)-2})\nabla u)=f(x,u)$ in $\Omega $, $u=0$ on $\partial \Omega $, where $\Omega $ is a smooth bounded domain in ${\mathbb{R}} ^N$. Our attention is focused on two cases when $f(x,u)=\pm (-\lambda |u|^{m(x)-2}u+|u|^{q(x)-2}u)$, where $m(x)=\max \lbrace p_1(x),p_2(x)\rbrace $ for any $x\in \overline{\Omega }$ or $m(x)$ for any $x\in \overline{\Omega }$. In the former case we show the existence of infinitely many weak solutions for any $\lambda >0$. In the latter we prove that if $\lambda $ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a ${\mathbb{Z}} _2$-symmetric version for even functionals of the Mountain Pass Theorem and some adequate variational methods.
Classification : 35D05, 35J60, 35J70, 47J30, 58E05, 68T40, 76A02, 76A05
Keywords: $p(x)$-Laplace operator; generalized Lebesgue-Sobolev space; critical point; weak solution; electrorheological fluid
@article{CMJ_2008_58_1_a10,
     author = {Mih\u{a}ilescu, Mihai},
     title = {On a class of nonlinear problems involving a $p(x)${-Laplace} type operator},
     journal = {Czechoslovak Mathematical Journal},
     pages = {155--172},
     year = {2008},
     volume = {58},
     number = {1},
     mrnumber = {2402532},
     zbl = {1165.35336},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a10/}
}
TY  - JOUR
AU  - Mihăilescu, Mihai
TI  - On a class of nonlinear problems involving a $p(x)$-Laplace type operator
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 155
EP  - 172
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a10/
LA  - en
ID  - CMJ_2008_58_1_a10
ER  - 
%0 Journal Article
%A Mihăilescu, Mihai
%T On a class of nonlinear problems involving a $p(x)$-Laplace type operator
%J Czechoslovak Mathematical Journal
%D 2008
%P 155-172
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a10/
%G en
%F CMJ_2008_58_1_a10
Mihăilescu, Mihai. On a class of nonlinear problems involving a $p(x)$-Laplace type operator. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 155-172. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a10/

[1] E. Acerbi and G. Mingione: Regularity results for a class of functionals with nonstandard growth. Arch. Rational Mech. Anal. 156 (2001), 121–140. | DOI | MR

[2] C. O. Alves and M. A. S. Souto: Existence of solutions for a class of problems involving the $p(x)$-Laplacian. Progress in Nonlinear Differential Equations and Their Applications 66 (2005), 17–32. | MR

[3] A. Ambrosetti and P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Functional Analysis 14 (1973), 349–381. | MR

[4] H. Brezis: Analyse fonctionnelle: théorie et applications. Masson, Paris, 1992. | MR

[5] L. Diening: Theorical and numerical results for electrorheological fluids. Ph.D. thesis, University of Freiburg, Germany, 2002.

[6] D. E. Edmunds, J. Lang and A. Nekvinda: On $L^{p(x)}$ norms. Proc. Roy. Soc. London Ser. A 455 (1999), 219–225. | MR

[7] D. E. Edmunds and J. Rákosník: Density of smooth functions in $W^{k,p(x)}(\Omega )$. Proc. Roy. Soc. London Ser. A 437 (1992), 229–236. | MR

[8] D. E. Edmunds and J. Rákosník: Sobolev embedding with variable exponent. Studia Math. 143 (2000), 267–293. | DOI | MR

[9] X. Fan, J. Shen and D. Zhao: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega )$. J. Math. Anal. Appl. 262 (2001), 749–760. | DOI | MR

[10] X. L. Fan and Q. H. Zhang: Existence of solutions for $p(x)$-Laplacian Dirichlet problem. Nonlinear Anal. 52 (2003), 1843–1852. | DOI | MR

[11] X. L. Fan, Q. H. Zhang and D. Zhao: Eigenvalues of $p(x)$-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302 (2005), 306–317. | DOI | MR

[12] X. L. Fan and D. Zhao: On the spaces $L^{p(x)}(\Omega )$ and $W^{m,p(x)}(\Omega )$. J. Math. Anal. Appl. 263 (2001), 424–446. | MR

[13] T. C. Halsey: Electrorheological fluids. Science 258 (1992), 761–766. | DOI

[14] O. Kováčik and J. Rákosník: On spaces $L^{p(x)}$ and $W^{1,p(x)}$. Czech. Math. J. 41 (1991), 592–618. | MR

[15] H. G. Leopold: Embedding on function spaces of variable order of differentiation in function spaces of variable order of integration. Czech. Math. J. 49 (1999), 633–644. | DOI | MR

[16] P. Marcellini: Regularity and existence of solutions of elliptic equations with $p,q$ growth conditions. J. Differential Equations 90 (1991), 1–30. | DOI | MR | Zbl

[17] M. Mihăilescu: Elliptic problems in variable exponent spaces. Bull. Austral. Math. Soc. 74 (2006), 197–206. | MR

[18] M. Mihăilescu and V. Rădulescu: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. Roy. Soc. London Ser. A 462 (2006), 2625–2641. | MR

[19] M. Mihăilescu and V. Rădulescu: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proceedings of the American Mathematical Society 135 (2007), no. 9, 2929–2937. | DOI | MR

[20] J. Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, Vol. 1034, Springer, Berlin, 1983. | MR | Zbl

[21] J. Musielak and W. Orlicz: On modular spaces. Studia Math. 18 (1959), 49–65. | DOI | MR

[22] H. Nakano: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd., Tokyo, 1950. | MR | Zbl

[23] W. Orlicz: Über konjugierte Exponentenfolgen. Studia Math. 3 (1931), 200–211. | DOI | Zbl

[24] C. Pfeiffer, C. Mavroidis, Y. Bar-Cohen and B. Dolgin: Electrorheological fluid based force feedback device, in Proceedings of the 1999 SPIE Telemanipulator and Telepresence Technologies VI Conference (Boston, MA), Vol. 3840. 1999, pp. 88–99.

[25] P. Rabinowitz: Minimax methods in critical point theory with applications to differential equations, Expository Lectures from the CBMS Regional Conference held at the University of Miami, American Mathematical Society, Providence, RI. 1984. | MR

[26] M. Ruzicka: Electrorheological Fluids Modeling and Mathematical Theory. Springer-Verlag, Berlin, 2002. | MR

[27] I. Sharapudinov: On the topology of the space $L^{p(t)}([0;1])$. Matem. Zametki 26 (1978), 613–632. | MR

[28] M. Struwe: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Heidelberg, 1996. | MR | Zbl

[29] I. Tsenov: Generalization of the problem of best approximation of a function in the space $L^s$. Uch. Zap. Dagestan Gos. Univ. 7 (1961), 25–37.

[30] W. M. Winslow: Induced fibration of suspensions. J. Appl. Phys. 20 (1949), 1137–1140. | DOI

[31] Q. Zhang: A strong maximum principle for differential equations with nonstandard $p(x)$-growth conditions. J. Math. Anal. Appl. 312 (2005), 24–32. | DOI | MR | Zbl

[32] V. Zhikov: Averaging of functionals in the calculus of variations and elasticity. Math. USSR Izv. 29 (1987), 33–66. | DOI

[33] V. Zhikov: On passing to the limit in nonlinear variational problem. Math. Sb. 183 (1992), 47–84. | MR