@article{CMJ_2008_58_1_a1,
author = {Chajda, Ivan},
title = {The axioms for implication in orthologic},
journal = {Czechoslovak Mathematical Journal},
pages = {15--21},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402523},
zbl = {1174.06310},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a1/}
}
Chajda, Ivan. The axioms for implication in orthologic. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 15-21. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a1/
[1] J. C. Abbott: Semi-boolean algebra. Matematički Vesnik 4 (1967), 177–198. | MR | Zbl
[2] J. C. Abbott: Orthoimplication algebras. Studia Logica 35 (1976), 173–177. | DOI | MR | Zbl
[3] I. Chajda, R. Halaš and H. Länger: Orthomodular implication algebras. Intern. J. of Theor. Phys. 40 (2001), 1875–1884. | DOI | MR
[4] I. Chajda, R. Halaš and H. Länger: Simple axioms for orthomodular implication algebras. Intern. J. of Theor. Phys. 43 (2004), 911–914. | DOI | MR
[5] I. Chajda, G. Eigenthaler and H. Länger: Congruence Classes in Universal Algebra. Heldermann Verlag, 2003. | MR
[6] B. Jónsson: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110–121. | DOI | MR
[7] G. Kalmbach: Orthomodular Lattices. Academic Press, London, 1983. | MR | Zbl