On a theorem of Cantor-Bernstein type for algebras
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 1-14 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Freytes proved a theorem of Cantor-Bernstein type for algbras; he applied certain sequences of central elements of bounded lattices. The aim of the present paper is to extend the mentioned result to the case when the lattices under consideration need not be bounded; instead of sequences of central elements we deal with sequences of internal direct factors of lattices.
Freytes proved a theorem of Cantor-Bernstein type for algbras; he applied certain sequences of central elements of bounded lattices. The aim of the present paper is to extend the mentioned result to the case when the lattices under consideration need not be bounded; instead of sequences of central elements we deal with sequences of internal direct factors of lattices.
Classification : 06B99
Keywords: lattice; $\mathcal L^*$-variety; center; internal direct factor
@article{CMJ_2008_58_1_a0,
     author = {Jakub{\'\i}k, J\'an},
     title = {On a theorem of {Cantor-Bernstein} type for algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--14},
     year = {2008},
     volume = {58},
     number = {1},
     mrnumber = {2402522},
     zbl = {1174.06308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a0/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On a theorem of Cantor-Bernstein type for algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1
EP  - 14
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a0/
LA  - en
ID  - CMJ_2008_58_1_a0
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On a theorem of Cantor-Bernstein type for algebras
%J Czechoslovak Mathematical Journal
%D 2008
%P 1-14
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a0/
%G en
%F CMJ_2008_58_1_a0
Jakubík, Ján. On a theorem of Cantor-Bernstein type for algebras. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a0/