Keywords: lattice; $\mathcal L^*$-variety; center; internal direct factor
@article{CMJ_2008_58_1_a0,
author = {Jakub{\'\i}k, J\'an},
title = {On a theorem of {Cantor-Bernstein} type for algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {1--14},
year = {2008},
volume = {58},
number = {1},
mrnumber = {2402522},
zbl = {1174.06308},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a0/}
}
Jakubík, Ján. On a theorem of Cantor-Bernstein type for algebras. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a0/
[1] R. Cignoli, I. D. D’Ottaviano, and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. | MR
[2] A. De Simone, D. Mundici, and M. Navara: A Cantor-Bernstein theorem for $\sigma $-complete $MV$-algebras. Czechoslovak Math. J. 53 (2003), 437–447. | DOI | MR
[3] A. De Simone, M. Navara, and P. Pták: On interval homogeneous orthomodular lattices. Commentat. Math. Univ. Carolinae 42 (2001), 23–30. | MR
[4] A. Dvurečenskij: Central elements and Cantor-Bernstein’s theorem for pseudo-effect algebras. J. Aust. Math. Soc. 74 (2003), 121–143. | DOI | MR
[5] H. Freytes: An algebraic version of the Cantor-Bernstein-Schröder theorem. Czechoslovak Math. J. 54 (2004), 609–621. | DOI | MR | Zbl
[6] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. Proc. Fourth Int. Symp. Econ. Informatics, Bucharest, 1999, pp. 961–968. | MR
[7] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras. Multiple-valued Logics 6 (2001), 95–135. | MR
[8] J. Hashimoto: On the product decomposition of partially ordered sets. Math. Jap. 1 (1948), 120–123. | MR | Zbl
[9] J. Jakubík: Direct product decompositions of partially ordered groups. Czechoslovak Math. J. 10 (1960), 231–243. (Russian)
[10] J. Jakubík: Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math. J. 22 (1972), 159-175. | MR
[11] J. Jakubík, M. Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359–378. | MR
[12] J. Jakubík: Complete lattice ordered groups with strong units. Czechoslovak Math. J. 46 (1996), 221–230. | MR
[13] J. Jakubík: Convex isomorphisms of archimedean lattice ordered groups. Mathware and Soft Computing 5 (1998), 49–56. | MR
[14] J. Jakubík: Cantor-Bernstein theorem for $MV$-algebras. Czechoslovak Math. J. 49 (1999), 517–526. | DOI | MR
[15] J. Jakubík: Direct product decompositions of infinitely distributive lattices. Math. Bohemica 125 (2000), 341–354. | MR
[16] J. Jakubík: Convex mappings of archimedean $MV$-algebras. Math. Slovaca 51 (2001), 383–391. | MR
[17] J. Jakubík: Direct product decompositions of pseudo $MV$-algebras. Arch. Math. 37 (2002), 131–142. | MR
[18] J. Jakubík: Cantor-Bernstein theorem for lattices. Math. Bohem. 127 (2002), 463–471. | MR
[19] J. Jakubík: A theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete pseudo $MV$-algebras. Tatra Mt. Math. Publ. 22 (2002), 91–103. | MR
[20] G. Jenča: A Cantor-Bernstein type theorem for effect algebras. Algebra Univers. 48 (2002), 399–411. | MR
[21] A. G. Kurosh: Group Theory. Nauka, Moskva, 1953. (Russian)
[22] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 255–273. | DOI | MR
[23] R. Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140–144. | DOI | MR
[24] A. Tarski: Cardinal Algebras. Oxford University Press, New York, 1949. | MR | Zbl