On a theorem of Cantor-Bernstein type for algebras
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 1-14 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Freytes proved a theorem of Cantor-Bernstein type for algbras; he applied certain sequences of central elements of bounded lattices. The aim of the present paper is to extend the mentioned result to the case when the lattices under consideration need not be bounded; instead of sequences of central elements we deal with sequences of internal direct factors of lattices.
Freytes proved a theorem of Cantor-Bernstein type for algbras; he applied certain sequences of central elements of bounded lattices. The aim of the present paper is to extend the mentioned result to the case when the lattices under consideration need not be bounded; instead of sequences of central elements we deal with sequences of internal direct factors of lattices.
Classification : 06B99
Keywords: lattice; $\mathcal L^*$-variety; center; internal direct factor
@article{CMJ_2008_58_1_a0,
     author = {Jakub{\'\i}k, J\'an},
     title = {On a theorem of {Cantor-Bernstein} type for algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--14},
     year = {2008},
     volume = {58},
     number = {1},
     mrnumber = {2402522},
     zbl = {1174.06308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a0/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On a theorem of Cantor-Bernstein type for algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1
EP  - 14
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a0/
LA  - en
ID  - CMJ_2008_58_1_a0
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On a theorem of Cantor-Bernstein type for algebras
%J Czechoslovak Mathematical Journal
%D 2008
%P 1-14
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a0/
%G en
%F CMJ_2008_58_1_a0
Jakubík, Ján. On a theorem of Cantor-Bernstein type for algebras. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/CMJ_2008_58_1_a0/

[1] R.  Cignoli, I. D.  D’Ottaviano, and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. | MR

[2] A.  De Simone, D.  Mundici, and M.  Navara: A Cantor-Bernstein theorem for $\sigma $-complete $MV$-algebras. Czechoslovak Math.  J. 53 (2003), 437–447. | DOI | MR

[3] A.  De Simone, M.  Navara, and P.  Pták: On interval homogeneous orthomodular lattices. Commentat. Math. Univ. Carolinae 42 (2001), 23–30. | MR

[4] A.  Dvurečenskij: Central elements and Cantor-Bernstein’s theorem for pseudo-effect algebras. J.  Aust. Math. Soc. 74 (2003), 121–143. | DOI | MR

[5] H.  Freytes: An algebraic version of the Cantor-Bernstein-Schröder theorem. Czechoslovak Math.  J. 54 (2004), 609–621. | DOI | MR | Zbl

[6] G.  Georgescu, A.  Iorgulescu: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. Proc. Fourth Int. Symp. Econ. Informatics, Bucharest, 1999, pp. 961–968. | MR

[7] G.  Georgescu, A.  Iorgulescu: Pseudo $MV$-algebras. Multiple-valued Logics 6 (2001), 95–135. | MR

[8] J.  Hashimoto: On the product decomposition of partially ordered sets. Math. Jap. 1 (1948), 120–123. | MR | Zbl

[9] J.  Jakubík: Direct product decompositions of partially ordered groups. Czechoslovak Math.  J. 10 (1960), 231–243. (Russian)

[10] J.  Jakubík: Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math.  J. 22 (1972), 159-175. | MR

[11] J.  Jakubík, M.  Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359–378. | MR

[12] J.  Jakubík: Complete lattice ordered groups with strong units. Czechoslovak Math.  J. 46 (1996), 221–230. | MR

[13] J.  Jakubík: Convex isomorphisms of archimedean lattice ordered groups. Mathware and Soft Computing 5 (1998), 49–56. | MR

[14] J.  Jakubík: Cantor-Bernstein theorem for $MV$-algebras. Czechoslovak Math.  J. 49 (1999), 517–526. | DOI | MR

[15] J.  Jakubík: Direct product decompositions of infinitely distributive lattices. Math. Bohemica 125 (2000), 341–354. | MR

[16] J.  Jakubík: Convex mappings of archimedean $MV$-algebras. Math. Slovaca 51 (2001), 383–391. | MR

[17] J.  Jakubík: Direct product decompositions of pseudo $MV$-algebras. Arch. Math. 37 (2002), 131–142. | MR

[18] J.  Jakubík: Cantor-Bernstein theorem for lattices. Math. Bohem. 127 (2002), 463–471. | MR

[19] J.  Jakubík: A theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete pseudo $MV$-algebras. Tatra Mt. Math. Publ. 22 (2002), 91–103. | MR

[20] G.  Jenča: A Cantor-Bernstein type theorem for effect algebras. Algebra Univers. 48 (2002), 399–411. | MR

[21] A. G.  Kurosh: Group Theory. Nauka, Moskva, 1953. (Russian)

[22] J.  Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math.  J. 52 (2002), 255–273. | DOI | MR

[23] R.  Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140–144. | DOI | MR

[24] A.  Tarski: Cardinal Algebras. Oxford University Press, New York, 1949. | MR | Zbl