$LJ$-spaces
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1223-1237 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper $LJ$-spaces are introduced and studied. They are a common generalization of Lindelöf spaces and $J$-spaces researched by E. Michael. A space $X$ is called an $LJ$-space if, whenever $\lbrace A,B\rbrace $ is a closed cover of $X$ with $A\cap B$ compact, then $A$ or $B$ is Lindelöf. Semi-strong $LJ$-spaces and strong $LJ$-spaces are also defined and investigated. It is demonstrated that the three spaces are different and have interesting properties and behaviors.
In this paper $LJ$-spaces are introduced and studied. They are a common generalization of Lindelöf spaces and $J$-spaces researched by E. Michael. A space $X$ is called an $LJ$-space if, whenever $\lbrace A,B\rbrace $ is a closed cover of $X$ with $A\cap B$ compact, then $A$ or $B$ is Lindelöf. Semi-strong $LJ$-spaces and strong $LJ$-spaces are also defined and investigated. It is demonstrated that the three spaces are different and have interesting properties and behaviors.
Classification : 54D20, 54D30, 54F05, 54F65
Keywords: $LJ$-spaces; Lindelöf; $J$-spaces; $L$-map; (countably) compact; perfect map; order topology; connected; topological linear spaces
@article{CMJ_2007_57_4_a8,
     author = {Gao, Yin-Zhu},
     title = {$LJ$-spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1223--1237},
     year = {2007},
     volume = {57},
     number = {4},
     mrnumber = {2357588},
     zbl = {1174.54012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a8/}
}
TY  - JOUR
AU  - Gao, Yin-Zhu
TI  - $LJ$-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1223
EP  - 1237
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a8/
LA  - en
ID  - CMJ_2007_57_4_a8
ER  - 
%0 Journal Article
%A Gao, Yin-Zhu
%T $LJ$-spaces
%J Czechoslovak Mathematical Journal
%D 2007
%P 1223-1237
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a8/
%G en
%F CMJ_2007_57_4_a8
Gao, Yin-Zhu. $LJ$-spaces. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1223-1237. http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a8/

[1] R. R. Engelking: General Topology. Revised and completed edition, Heldermann Verlag, Berlin, 1989. | MR | Zbl

[2] Y. Kodama and K. Nagami: Theory of General Topology. Iwanami, Tokyo, 1974. (Japanese)

[3] E. Michael: $J$-spaces. Top. Appl. 102 (2000), 315–339. | MR | Zbl

[4] E. Michael: A note on closed maps and compact sets. Israel Math. J. 2 (1964), 173–176. | DOI | MR | Zbl

[5] E. Michael: A survey of $J$-spaces. Proceeding of the Ninth Prague Topological Symposium Contributed papers from the Symposium held in Prague Czech Republic, August 19–25, 2001, pp. 191–193. | MR

[6] J. R. Munkres: Topology. Prentice-Hall, Englewood Cliffs, NJ, 1975. | MR | Zbl

[7] K. Nowinski: Closed mappings and the Freudenthal compactification. Fund. Math. 76 (1972), 71–83. | DOI | MR | Zbl

[8] L. A. Steen and J. A. Seebach, Jr: Counterexamples in Topology. Springer-Verlag, New York, 1978. | MR