$g$-metrizable spaces and the images of semi-metric spaces
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1141-1149
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we prove that a space $X$ is a $g$-metrizable space if and only if $X$ is a weak-open, $\pi $ and $\sigma $-image of a semi-metric space, if and only if $X$ is a strong sequence-covering, quotient, $\pi $ and $mssc$-image of a semi-metric space, where “semi-metric” can not be replaced by “metric”.
In this paper, we prove that a space $X$ is a $g$-metrizable space if and only if $X$ is a weak-open, $\pi $ and $\sigma $-image of a semi-metric space, if and only if $X$ is a strong sequence-covering, quotient, $\pi $ and $mssc$-image of a semi-metric space, where “semi-metric” can not be replaced by “metric”.
Classification :
54C10, 54D55, 54E25, 54E35, 54E40
Keywords: $g$-metrizable spaces; $sn$-metrizable spaces; weak-open mappings; strong sequence-covering mappings; quotient mappings; $\pi $-mappings; $\sigma $-mappings; $mssc$-mappings
Keywords: $g$-metrizable spaces; $sn$-metrizable spaces; weak-open mappings; strong sequence-covering mappings; quotient mappings; $\pi $-mappings; $\sigma $-mappings; $mssc$-mappings
@article{CMJ_2007_57_4_a4,
author = {Ge, Ying and Lin, Shou},
title = {$g$-metrizable spaces and the images of semi-metric spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {1141--1149},
year = {2007},
volume = {57},
number = {4},
mrnumber = {2357584},
zbl = {1174.54018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a4/}
}
Ge, Ying; Lin, Shou. $g$-metrizable spaces and the images of semi-metric spaces. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1141-1149. http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a4/