The Neumann problem for the Laplace equation on general domains
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1107-1139 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The solution of the weak Neumann problem for the Laplace equation with a distribution as a boundary condition is studied on a general open set $G$ in the Euclidean space. It is shown that the solution of the problem is the sum of a constant and the Newtonian potential corresponding to a distribution with finite energy supported on $\partial G$. If we look for a solution of the problem in this form we get a bounded linear operator. Under mild assumptions on $G$ a necessary and sufficient condition for the solvability of the problem is given and the solution is constructed.
The solution of the weak Neumann problem for the Laplace equation with a distribution as a boundary condition is studied on a general open set $G$ in the Euclidean space. It is shown that the solution of the problem is the sum of a constant and the Newtonian potential corresponding to a distribution with finite energy supported on $\partial G$. If we look for a solution of the problem in this form we get a bounded linear operator. Under mild assumptions on $G$ a necessary and sufficient condition for the solvability of the problem is given and the solution is constructed.
Classification : 31B10, 35D05, 35J05, 35J25
Keywords: Laplace equation; Neumann problem; potential; boundary integral equation method
@article{CMJ_2007_57_4_a3,
     author = {Medkov\'a, Dagmar},
     title = {The {Neumann} problem for the {Laplace} equation on general domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1107--1139},
     year = {2007},
     volume = {57},
     number = {4},
     mrnumber = {2357583},
     zbl = {1174.31305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a3/}
}
TY  - JOUR
AU  - Medková, Dagmar
TI  - The Neumann problem for the Laplace equation on general domains
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1107
EP  - 1139
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a3/
LA  - en
ID  - CMJ_2007_57_4_a3
ER  - 
%0 Journal Article
%A Medková, Dagmar
%T The Neumann problem for the Laplace equation on general domains
%J Czechoslovak Mathematical Journal
%D 2007
%P 1107-1139
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a3/
%G en
%F CMJ_2007_57_4_a3
Medková, Dagmar. The Neumann problem for the Laplace equation on general domains. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1107-1139. http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a3/

[1] D. R.  Adams, L. I.  Hedberg: Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften  314. Springer-Verlag, Berlin-Heidelberg, 1995. | MR

[2] D. H.  Armitage, S. J.  Gardiner: Classical Potential Theory. Springer-Verlag, London, 2001. | MR

[3] J.  Deny: Les potentiels d’énergie finie. Acta Math. 82 (1950), 107–183. | DOI | MR | Zbl

[4] L. E. Fraenkel: Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge University Press, Cambridge, 2000. | MR | Zbl

[5] L. L.  Helms: Introduction to Potential Theory. Pure and Applied Mathematics  22. John Wiley & Sons, 1969. | MR

[6] H.  Heuser: Funktionalanalysis. Teubner, Stuttgart, 1975. | MR | Zbl

[7] S.  Jerison, C. E.  Kenig: Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 47 (1982), 80–147. | DOI

[8] P. W.  Jones: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981), 71–88. | DOI | MR | Zbl

[9] J. J.  Koliha: A generalized Drazin inverse. Glasgow Math.  J. 38 (1996), 367–381. | DOI | MR | Zbl

[10] P.  Koskela, H.  Tuominen: Measure density and extendability of Sobolev functions. (to appear).

[11] J.  Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics  823. Springer-Verlag, Berlin, 1980, pp. . | MR

[12] N. L.  Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian) | MR

[13] V. G.  Maz’ya, S. V.  Poborchi: Differentiable Functions on Bad Domains. World Scientific Publishing, Singapore, 1997. | MR

[14] W.  McLean: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, 2000. | MR | Zbl

[15] D.  Medková: Solution of the Robin problem for the Laplace equation. Appl. Math. 43 (1998), 133–155. | DOI | MR

[16] D.  Medková: Solution of the Neumann problem for the Laplace equation. Czechoslovak Math.  J. 48 (1998), 768–784. | DOI

[17] C.  Miranda: Differential Equations of Elliptic Type. Springer-Verlag, Berlin, 1970. | MR | Zbl

[18] I.  Netuka: Smooth surfaces with infinite cyclic variation. Čas. Pěst. Mat. 96 (1971), 86–101. (Czech) | MR | Zbl

[19] M.  Schechter: Principles of Functional Analysis. Am. Math. Soc., Providence, 2002. | MR

[20] G. E.  Shilov: Mathematical Analysis. Second Special Course. Nauka, Moskva, 1965. (Russian) | MR

[21] Ch. G.  Simader, H.  Sohr: The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. Pitman Research Notes in Mathematics Series  360. Addison Wesley Longman Inc., Essex, 1996. | MR

[22] J. Stampfli: Hyponormal operators. Pacific J.  Math. 12 (1962), 1453–1458. | DOI | MR | Zbl

[23] O. Steinbach, W. L. Wendland: On C.  Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J.  Math. Anal. Appl. 262 (2001), 733–748. | DOI | MR

[24] G.  Verchota: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J.  Funct. Anal. 59 (1984), 572–611. | DOI | MR | Zbl

[25] K.  Yosida: Functional Analysis. Springer-Verlag, Berlin, 1965. | Zbl