Keywords: generalized $MV$-algebra; representability; congruence relation; unital lattice ordered group
@article{CMJ_2007_57_4_a2,
author = {Jakub{\'\i}k, J\'an},
title = {Banaschewski{\textquoteright}s theorem for generalized $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {1099--1105},
year = {2007},
volume = {57},
number = {4},
mrnumber = {2357582},
zbl = {1174.06318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a2/}
}
Jakubík, Ján. Banaschewski’s theorem for generalized $MV$-algebras. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1099-1105. http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a2/
[1] B. Banaschewski: On lattice-ordered groups. Fund. Math. 55 (1964), 113–122. | DOI | MR | Zbl
[2] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967. | MR | Zbl
[3] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl
[4] A. Dvurečenskij,: Pseudo MV-algebras are intervals of $\ell $-groups. J. Austral. Math. Soc. 72 (2002), 427–445. | DOI | MR
[5] A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, 2000. | MR
[6] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, INFOREC, Bucharest, 6–9 May, Romania, 1999, pp. 961–968. | MR
[7] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras. Multiple-Valued Logic 6 (2001), 95–135. | MR
[8] J. Jakubík: Normal prime filters of a lattice ordered group. Czech. Math. J. 24 (1974), 91–96. | MR
[9] J. Jakubík: Subdirect product decompositions of MV-algebras. Czech. Math. J. 49 (1999), 163–173. | DOI | MR
[10] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czech. Math. J. 52 (2002), 255–273. | DOI | MR