Graded quaternion symbol equivalence of function fields
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1311-1319 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present criteria for a pair of maps to constitute a quaternion-symbol equivalence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed in terms of vanishing of the Clifford invariant. In principle, we prove that a local condition of a quaternion-symbol equivalence can be transcribed from the Brauer group to the Brauer-Wall group.
We present criteria for a pair of maps to constitute a quaternion-symbol equivalence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed in terms of vanishing of the Clifford invariant. In principle, we prove that a local condition of a quaternion-symbol equivalence can be transcribed from the Brauer group to the Brauer-Wall group.
Classification : 11E10, 11E81, 14H05, 14P05, 16K50
Keywords: Brauer group; Brauer-Wall group; Witt equivalence
@article{CMJ_2007_57_4_a12,
     author = {Koprowski, Przemys{\l}aw},
     title = {Graded quaternion symbol equivalence of function fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1311--1319},
     year = {2007},
     volume = {57},
     number = {4},
     mrnumber = {2357592},
     zbl = {1190.11029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a12/}
}
TY  - JOUR
AU  - Koprowski, Przemysław
TI  - Graded quaternion symbol equivalence of function fields
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1311
EP  - 1319
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a12/
LA  - en
ID  - CMJ_2007_57_4_a12
ER  - 
%0 Journal Article
%A Koprowski, Przemysław
%T Graded quaternion symbol equivalence of function fields
%J Czechoslovak Mathematical Journal
%D 2007
%P 1311-1319
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a12/
%G en
%F CMJ_2007_57_4_a12
Koprowski, Przemysław. Graded quaternion symbol equivalence of function fields. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1311-1319. http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a12/

[1] A. Czogała: Równowa.zność Hilberta ciał globalnych. Volume 1969 of Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia]. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001. | MR

[2] M. Knebusch: On algebraic curves over real closed fields. II. Math. Z. 151 (1976), 189–205. | MR | Zbl

[3] P. Koprowski: Local-global principle for Witt equivalence of function fields over global fields. Colloq. Math. 91 (2002), 293–302. | DOI | MR | Zbl

[4] P. Koprowski: Witt equivalence of algebraic function fields over real closed fields. Math. Z. 242 (2002), 323–345. | DOI | MR | Zbl

[5] P. Koprowski: Integral equivalence of real algebraic function fields. Tatra Mt. Math. Publ. 32 (2005), 53–61. | MR | Zbl

[6] T. Y. Lam: Introduction to quadratic forms over fields. Volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005. | MR | Zbl

[7] R. Perlis, K. Szymiczek, P. E. Conner and R. Litherland: Matching Witts with global fields. In Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 365–387. Amer. Math. Soc., Providence, RI, 1994. | MR

[8] K. Szymiczek: Matching Witts locally and globally. Math. Slovaca 41 (1991), 315–330. | MR | Zbl

[9] K. Szymiczek: Witt equivalence of global fields. Comm. Algebra 19 (1991), 1125–1149. | DOI | MR | Zbl

[10] K. Szymiczek: Hilbert-symbol equivalence of number fields. Tatra Mt. Math. Publ. 11 (1997), 7–16. | MR | Zbl

[11] K. Szymiczek: A characterization of tame Hilbert-symbol equivalence. Acta Math. Inform. Univ. Ostraviensis 6 (1998), 191–201. | MR | Zbl