Graded quaternion symbol equivalence of function fields
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1311-1319
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We present criteria for a pair of maps to constitute a quaternion-symbol equivalence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed in terms of vanishing of the Clifford invariant. In principle, we prove that a local condition of a quaternion-symbol equivalence can be transcribed from the Brauer group to the Brauer-Wall group.
We present criteria for a pair of maps to constitute a quaternion-symbol equivalence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed in terms of vanishing of the Clifford invariant. In principle, we prove that a local condition of a quaternion-symbol equivalence can be transcribed from the Brauer group to the Brauer-Wall group.
Classification :
11E10, 11E81, 14H05, 14P05, 16K50
Keywords: Brauer group; Brauer-Wall group; Witt equivalence
Keywords: Brauer group; Brauer-Wall group; Witt equivalence
@article{CMJ_2007_57_4_a12,
author = {Koprowski, Przemys{\l}aw},
title = {Graded quaternion symbol equivalence of function fields},
journal = {Czechoslovak Mathematical Journal},
pages = {1311--1319},
year = {2007},
volume = {57},
number = {4},
mrnumber = {2357592},
zbl = {1190.11029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a12/}
}
Koprowski, Przemysław. Graded quaternion symbol equivalence of function fields. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1311-1319. http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a12/