Varieties of idempotent slim groupoids
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1289-1309 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Idempotent slim groupoids are groupoids satisfying $xx\=x$ and $x(yz)\=xz$. We prove that the variety of idempotent slim groupoids has uncountably many subvarieties. We find a four-element, inherently nonfinitely based idempotent slim groupoid; the variety generated by this groupoid has only finitely many subvarieties. We investigate free objects in some varieties of idempotent slim groupoids determined by permutational equations.
Idempotent slim groupoids are groupoids satisfying $xx\=x$ and $x(yz)\=xz$. We prove that the variety of idempotent slim groupoids has uncountably many subvarieties. We find a four-element, inherently nonfinitely based idempotent slim groupoid; the variety generated by this groupoid has only finitely many subvarieties. We investigate free objects in some varieties of idempotent slim groupoids determined by permutational equations.
Classification : 08B15, 20N02
Keywords: groupoid; variety; nonfinitely based
@article{CMJ_2007_57_4_a11,
     author = {Je\v{z}ek, J.},
     title = {Varieties of idempotent slim groupoids},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1289--1309},
     year = {2007},
     volume = {57},
     number = {4},
     mrnumber = {2357591},
     zbl = {1161.20056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a11/}
}
TY  - JOUR
AU  - Ježek, J.
TI  - Varieties of idempotent slim groupoids
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1289
EP  - 1309
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a11/
LA  - en
ID  - CMJ_2007_57_4_a11
ER  - 
%0 Journal Article
%A Ježek, J.
%T Varieties of idempotent slim groupoids
%J Czechoslovak Mathematical Journal
%D 2007
%P 1289-1309
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a11/
%G en
%F CMJ_2007_57_4_a11
Ježek, J. Varieties of idempotent slim groupoids. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1289-1309. http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a11/