Nonlinear evolution inclusions arising from phase change models
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1067-1098 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.
The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.
Classification : 34G25, 35B40, 35G25, 35G30, 47J35, 74H40, 82B26, 82C24
Keywords: nonlinear and nonlocal evolution equations; Cahn-Hilliard type dynamics; phase transitions models; existence; uniqueness; long-time behaviour
@article{CMJ_2007_57_4_a1,
     author = {Colli, Pierluigi and Krej\v{c}{\'\i}, Pavel and Rocca, Elisabetta and Sprekels, J\"urgen},
     title = {Nonlinear evolution inclusions arising from phase change models},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1067--1098},
     year = {2007},
     volume = {57},
     number = {4},
     mrnumber = {2357581},
     zbl = {1174.35021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a1/}
}
TY  - JOUR
AU  - Colli, Pierluigi
AU  - Krejčí, Pavel
AU  - Rocca, Elisabetta
AU  - Sprekels, Jürgen
TI  - Nonlinear evolution inclusions arising from phase change models
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1067
EP  - 1098
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a1/
LA  - en
ID  - CMJ_2007_57_4_a1
ER  - 
%0 Journal Article
%A Colli, Pierluigi
%A Krejčí, Pavel
%A Rocca, Elisabetta
%A Sprekels, Jürgen
%T Nonlinear evolution inclusions arising from phase change models
%J Czechoslovak Mathematical Journal
%D 2007
%P 1067-1098
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a1/
%G en
%F CMJ_2007_57_4_a1
Colli, Pierluigi; Krejčí, Pavel; Rocca, Elisabetta; Sprekels, Jürgen. Nonlinear evolution inclusions arising from phase change models. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1067-1098. http://geodesic.mathdoc.fr/item/CMJ_2007_57_4_a1/

[1] A. Ambrosetti, G. Prodi: A Primer of Nonlinear Analysis. Cambridge Stud. Adv. Math., Vol. 34. Cambridge Univ. Press, Cambridge, 1995. | MR

[2] J.-P. Aubin, I. Ekeland: Applied Nonlinear Analysis. John Wiley & Sons, New York, 1984. | MR

[3] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden, 1976. | MR | Zbl

[4] P. Bates, J. Han: The Neumann boundary problem for a nonlocal Cahn-Hilliard equation. J. Differ. Equations 212 (2005), 235–277. | DOI | MR

[5] H. Brezis: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Studies, Vol.  5. North-Holland, Amsterdam, 1973. | MR

[6] M. Brokate, J. Sprekels: Hysteresis and Phase Transitions. Appl. Math. Sci., Vol.  121. Springer-Verlag, New York, 1996. | MR

[7] J. Cahn, J. Hilliard: Free energy of a nonuniform system. I.  Interfacial free energy. J. Chem. Phys. 28 (1958), 258–267.

[8] C. K. Chen, P. C. Fife: Nonlocal models of phase transitions in solids. Adv. Math. Sci. Appl. 10 (2000), 821–849. | MR

[9] P. Colli: On some doubly nonlinear evolution equations in Banach spaces. Japan J.  Indust. Appl. Math. 9 (1992), 181–203. | DOI | MR | Zbl

[10] P. Colli, A. Visintin: On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations 15 (1990), 737–756. | DOI | MR

[11] N. Dunford, J.T. Schwartz: Linear Operators. Part  I. General Theory. Interscience Publishers, New York, 1958. | MR

[12] T. Fukao, N. Kenmochi, and I. Pawlow: Transmission problems arising in Czochralski process of crystal growth. In: Mathematical Aspects of Modelling Structure Formation Phenomena. GAKUTO Internat. Ser. Math. Sci. Appl., Vol.  17, N. Kenmochi, M. Niezgódka, and M. Ôtani (eds.), Gakkotosho, Tokyo, 2001, pp. 228–243. | MR

[13] H. Gajewski: On a nonlocal model of non-isothermal phase separation. Adv. Math. Sci. Appl. 12 (2002), 569–586. | MR | Zbl

[14] H. Gajewski, K. Zacharias: On a nonlocal phase separation model. J.  Math. Anal. Appl. 286 (2003), 11–31. | DOI | MR

[15] G. Giacomin, J. L. Lebowitz: Phase segregation dynamics in particle systems with long range interactions. I.  Macroscopic limits. J.  Statist. Phys. 87 (1997), 37–61. | MR

[16] G. Giacomin, J. L. Lebowitz: Phase segregation dynamics in particle systems with long range interactions. II.  Interface motion. SIAM J.  Appl. Math. 58 (1998), 1707–1729. | DOI | MR

[17] A. Haraux: Systèmes dynamiques dissipatifs et applications. Rech. Math. Appl., Vol.  17. Masson, Paris, 1991. | MR

[18] E. Hille, R. Phillips: Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ., Vol. 31. Am. Math. Soc., Providence, 1957. | MR

[19] N. Kenmochi, M. Niezgódka, and I. Pawlow: Subdifferential operator approach to the Cahn-Hilliard equation with constraint. J. Differ. Equations 117 (1995), 320–356. | DOI | MR

[20] A. Miranville: Generalized Cahn-Hilliard equations based on a microforce balance. J.  Appl. Math. 4 (2003), 165–185. | MR | Zbl

[21] J. F.  Rodrigues: Variational methods in the Stefan problem. In: Phase Transitions and Hysteresis. Lecture Notes in Math., Vol.  1584, A. Visintin (ed.), Springer-Verlag, Berlin, 1994, pp. 147–212. | MR | Zbl

[22] M. Schechter: Principles of Functional Analysis. Academic Press, New York-London, 1971. | MR | Zbl

[23] J. Simon: Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl. 146 (1987), 65–96. | MR

[24] K. Yosida: Functional Analysis. Springer-Verlag, Berlin, 1965. | Zbl